Answer:
1. CO₃⁻² + H₂O ⇄ HCO₃⁻ + OH⁻
2. HCO₃⁻ + H₂O ⇄ H₂CO₃ + OH⁻
3. H₂CO₃ → H₂O + CO₂
Basic solution
Explanation:
Brønsted Lowry theory:
Acid → Release a proton
Base → Accept a proton
1. CO₃⁻² + H₂O ⇄ HCO₃⁻ + OH⁻
Carbonate takes a proton from the water
2. HCO₃⁻ + H₂O ⇄ H₂CO₃ + OH⁻
Bicarbonate takesa proton from the water to produce carbonic acid.
3. H₂CO₃ → H₂O + CO₂
Carbonate acid decomposes into CO₂ and H₂O
In the first reaction, when the carbonate takes a proton from the water, water releases OH⁻, so the solution is basic.
Explanation:
If we compare its solubility products without any calculation then, Magnesium hydroxide is more soluble than compound A and C. Magnesium hydroxide is less soluble than compound D.
- The solubility product of magnesium hydroxide and zinc carbonate is same so it is not possible to determine whether it is more or less soluble than compound B
Explanation:
a chemical reaction that absorbs energy is known to be endothermic since heat is being taken in by the reaction. The value of the transition state would be 150 because you have to subtract the product's enthalpy and the reactant's enthalpy to obtain it. A positive value for the transition state also corroborates that the reaction is endothermic.
The density of the patient's hemoglobin in their blood in units of g/ml = 0.2g/mL
<h3>Calculation of hemoglobin density</h3>
Hemoglobin is the red blood cell pigment that transports oxygen to the body cells.
1 gram of hemoglobin = 2.15mg
Blood volume of the patient is = 4.9ml
Density= mass/volume
Therefore the density of patients hemoglobin= 1/4.9 = 0.2g/mL
Learn more about hemoglobin here:
brainly.com/question/8197071