2Al+6HCl⇒3H₂+2AlCl₃
<h3>Further explanation
</h3>
Equalization of chemical reaction equations can be done using variables. Steps in equalizing the reaction equation:
• 1. gives a coefficient on substances involved in the equation of reaction such as a, b, or c etc.
• 2. make an equation based on the similarity of the number of atoms where the number of atoms = coefficient × index between reactant and product
• 3. Select the coefficient of the substance with the most complex chemical formula equal to 1
Reaction
Al+HCl⇒H₂+AlCl₃
aAl+bHCl⇒cH₂+AlCl₃
Al, left=a, right=1⇒a=1
Cl, left=b, right=3⇒b=3
H, left=b, right=2c⇒b=2c⇒3=2c⇒c=3/2
the equation becomes :
Al+3HCl⇒3/2H₂+AlCl₃ x2
2Al+6HCl⇒3H₂+2AlCl₃
I might not be right but I think the empirical formula is NO2
Hydrophobic molecules tend to be nonpolar molecules that group together to form micelles rather than be exposed to water. Hydrophobic molecules typically dissolve in nonpolar solvents (e.g., organic solvents).
Answer:
An alcohol thermometer can measure the freezing point of a liquid that freezes at −80 °C.
Explanation:
A thermometer is a device used to measure temperature. A thermometer must contain a thermometric substance. A thermometric substance is any substance having a particular physical property that changes with temperature.
For all liquid-in-glass thermometers, the property that changes with change in temperature is the height of the liquid. There are two kinds of liquid-in-glass thermometers; mercury-in-glass thermometer and alcohol-in-glass thermometer.
Alcohol-in-glass thermometer measures very low temperatures up to as low as -115°C. If it measures such a low temperature, then it can efficiently measure -80°C hence the answer.
Alcohol-in-glass thermometers have a narrower temperature range than mercury-in-glass thermometer. The later is well adapter for the measurement bof higher tempetures up to 357°C.
CaCO3(s) ⟶ CaO(s)+CO2(s)
<span>
moles CaCO3: 1.31 g/100 g/mole CaCO3= 0.0131 </span>
<span>
From stoichiometry, 1 mole of CO2 is formed per 1 mole CaCO3,
therefore 0.0131 moles CO2 should also be formed.
0.0131 moles CO2 x 44 g/mole CO2 = 0.576 g CO2 </span>
Therefore:<span>
<span>% Yield: 0.53/.576 x100= 92 percent yield</span></span>