a) The equation of line k is:
![y = -\frac{202}{167}x + \frac{598}{167}](https://tex.z-dn.net/?f=y%20%3D%20-%5Cfrac%7B202%7D%7B167%7Dx%20%2B%20%5Cfrac%7B598%7D%7B167%7D)
b) The equation of line j is:
![y = \frac{167}{202}x + \frac{1546}{202}](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B167%7D%7B202%7Dx%20%2B%20%5Cfrac%7B1546%7D%7B202%7D)
The equation of a line, in <u>slope-intercept formula</u>, is given by:
![y = mx + b](https://tex.z-dn.net/?f=y%20%3D%20mx%20%2B%20b)
In which:
- m is the slope, which is the rate of change.
- b is the y-intercept, which is the value of y when x = 0.
Item a:
- Line k intersects line m with an angle of 109º, thus:
![\tan{109^{\circ}} = \frac{m_2 - m_1}{1 + m_1m_2}](https://tex.z-dn.net/?f=%5Ctan%7B109%5E%7B%5Ccirc%7D%7D%20%3D%20%5Cfrac%7Bm_2%20-%20m_1%7D%7B1%20%2B%20m_1m_2%7D)
In which
and
are the slopes of <u>k and m.</u>
- Line k goes through points (-3,-1) and (5,2), thus, it's slope is:
![m_1 = \frac{2 - (-1)}{5 - (-3)} = \frac{3}{8}](https://tex.z-dn.net/?f=m_1%20%3D%20%5Cfrac%7B2%20-%20%28-1%29%7D%7B5%20-%20%28-3%29%7D%20%3D%20%5Cfrac%7B3%7D%7B8%7D)
- The tangent of 109 degrees is
![\tan{109^{\circ}} = -\frac{29}{10}](https://tex.z-dn.net/?f=%5Ctan%7B109%5E%7B%5Ccirc%7D%7D%20%3D%20-%5Cfrac%7B29%7D%7B10%7D)
- Thus, the slope of line m is found solving the following equation:
![\tan{109^{\circ}} = \frac{m_2 - m_1}{1 + m_1m_2}](https://tex.z-dn.net/?f=%5Ctan%7B109%5E%7B%5Ccirc%7D%7D%20%3D%20%5Cfrac%7Bm_2%20-%20m_1%7D%7B1%20%2B%20m_1m_2%7D)
![-\frac{29}{10} = \frac{m_2 - \frac{3}{8}}{1 + \frac{3}{8}m_2}](https://tex.z-dn.net/?f=-%5Cfrac%7B29%7D%7B10%7D%20%3D%20%5Cfrac%7Bm_2%20-%20%5Cfrac%7B3%7D%7B8%7D%7D%7B1%20%2B%20%5Cfrac%7B3%7D%7B8%7Dm_2%7D)
![m_2 - \frac{3}{8} = -\frac{29}{10} - \frac{87}{80}m_2](https://tex.z-dn.net/?f=m_2%20-%20%5Cfrac%7B3%7D%7B8%7D%20%3D%20-%5Cfrac%7B29%7D%7B10%7D%20-%20%5Cfrac%7B87%7D%7B80%7Dm_2)
![m_2 + \frac{87}{80}m_2 = -\frac{29}{10} + \frac{3}{8}](https://tex.z-dn.net/?f=m_2%20%2B%20%5Cfrac%7B87%7D%7B80%7Dm_2%20%3D%20-%5Cfrac%7B29%7D%7B10%7D%20%2B%20%5Cfrac%7B3%7D%7B8%7D)
![\frac{167m_2}{80} = \frac{-202}{80}](https://tex.z-dn.net/?f=%5Cfrac%7B167m_2%7D%7B80%7D%20%3D%20%5Cfrac%7B-202%7D%7B80%7D)
![m_2 = -\frac{202}{167}](https://tex.z-dn.net/?f=m_2%20%3D%20-%5Cfrac%7B202%7D%7B167%7D)
Thus:
![y = -\frac{202}{167}x + b](https://tex.z-dn.net/?f=y%20%3D%20-%5Cfrac%7B202%7D%7B167%7Dx%20%2B%20b)
It goes through point (-2,6), that is, when
, and this is used to find b.
![y = -\frac{202}{167}x + b](https://tex.z-dn.net/?f=y%20%3D%20-%5Cfrac%7B202%7D%7B167%7Dx%20%2B%20b)
![6 = -\frac{202}{167}(-2) + b](https://tex.z-dn.net/?f=6%20%3D%20-%5Cfrac%7B202%7D%7B167%7D%28-2%29%20%2B%20b)
![b = 6 - \frac{404}{167}](https://tex.z-dn.net/?f=b%20%3D%206%20-%20%5Cfrac%7B404%7D%7B167%7D)
![b = \frac{6(167)-404}{167}](https://tex.z-dn.net/?f=b%20%3D%20%5Cfrac%7B6%28167%29-404%7D%7B167%7D)
![b = \frac{598}{167}](https://tex.z-dn.net/?f=b%20%3D%20%5Cfrac%7B598%7D%7B167%7D)
Thus. the equation of line k, in slope-intercept formula, is:
![y = -\frac{202}{167}x + \frac{598}{167}](https://tex.z-dn.net/?f=y%20%3D%20-%5Cfrac%7B202%7D%7B167%7Dx%20%2B%20%5Cfrac%7B598%7D%7B167%7D)
Item b:
- Lines j and k intersect at an angle of 90º, thus they are perpendicular, which means that the multiplication of their slopes is -1.
Thus, the slope of line j is:
![-\frac{202}{167}m = -1](https://tex.z-dn.net/?f=-%5Cfrac%7B202%7D%7B167%7Dm%20%3D%20-1)
![m = \frac{167}{202}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B167%7D%7B202%7D)
Then
![y = \frac{167}{202}x + b](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B167%7D%7B202%7Dx%20%2B%20b)
Also goes through point (-2,6), thus:
![6 = \frac{167}{202}(-2) + b](https://tex.z-dn.net/?f=6%20%3D%20%5Cfrac%7B167%7D%7B202%7D%28-2%29%20%2B%20b)
![b = \frac{(2)167 + 202(6)}{202}](https://tex.z-dn.net/?f=b%20%3D%20%5Cfrac%7B%282%29167%20%2B%20202%286%29%7D%7B202%7D)
![b = \frac{1546}{202}](https://tex.z-dn.net/?f=b%20%3D%20%5Cfrac%7B1546%7D%7B202%7D)
The equation of line j is:
![y = \frac{167}{202}x + \frac{1546}{202}](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B167%7D%7B202%7Dx%20%2B%20%5Cfrac%7B1546%7D%7B202%7D)
A similar problem is given at brainly.com/question/16302622
https://youtu.be/GZcm4mswivc
espero que te ayude
Answer:
It's irrational
Step-by-step explanation:
the square root of 27 is equal to:
![\sqrt{27} = \sqrt{3\cdot3\cdot3} = 3\sqrt{3}](https://tex.z-dn.net/?f=%5Csqrt%7B27%7D%20%3D%20%5Csqrt%7B3%5Ccdot3%5Ccdot3%7D%20%3D%203%5Csqrt%7B3%7D)
We know that
is an irrational number (but a real number), so
is the same.
In case we need to prove that
is irrational, please leave a comment.