1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Molodets [167]
2 years ago
7

Select the actions you use to solve 3x = 12. Then select the property that justifies that action.

Mathematics
1 answer:
Travka [436]2 years ago
8 0
X = 4

Use division divide both sides by 3

3x/3 leaves x

12/3=4

Hope it helps

x=4
You might be interested in
Lines 3x-2y+7=0 and 6x+ay-18=0 is perpendicular. What is the value of a?
BlackZzzverrR [31]

Answer:

\boxed{\sf a = 9 }

Step-by-step explanation:

Two lines are given to us which are perpendicular to each other and we need to find out the value of a . The given equations are ,

\sf\longrightarrow 3x - 2y +7=0

\sf\longrightarrow 6x +ay -18 = 0

Step 1 : <u>Conver</u><u>t</u><u> </u><u>the </u><u>equations</u><u> in</u><u> </u><u>slope</u><u> intercept</u><u> form</u><u> </u><u>of</u><u> the</u><u> line</u><u> </u><u>.</u>

\sf\longrightarrow y = \dfrac{3x}{2} +\dfrac{ 7 }{2}

and ,

\sf\longrightarrow y = -\dfrac{6x }{a}+\dfrac{18}{a}

Step 2: <u>Find </u><u>the</u><u> </u><u>slope</u><u> of</u><u> the</u><u> </u><u>lines </u><u>:</u><u>-</u>

Now we know that the product of slope of two perpendicular lines is -1. Therefore , from Slope Intercept Form of the line we can say that the slope of first line is ,

\sf\longrightarrow Slope_1 = \dfrac{3}{2}

And the slope of the second line is ,

\sf\longrightarrow Slope_2 =\dfrac{-6}{a}

Step 3: <u>Multiply</u><u> </u><u>the </u><u>slopes </u><u>:</u><u>-</u><u> </u>

\sf\longrightarrow \dfrac{3}{2}\times \dfrac{-6}{a}= -1

Multiply ,

\sf\longrightarrow \dfrac{-9}{a}= -1

Multiply both sides by a ,

\sf\longrightarrow (-1)a = -9

Divide both sides by -1 ,

\sf\longrightarrow \boxed{\blue{\sf a = 9 }}

<u>Hence </u><u>the</u><u> </u><u>value</u><u> of</u><u> a</u><u> </u><u>is </u><u>9</u><u> </u><u>.</u>

8 0
2 years ago
chad had 63 cows on his ranch. 42 of these had tags, What is ratio comparing cows without tags to cows with tags
Montano1993 [528]

Answer:

21/42

Step-by-step explanation:

Hope this helps :)

6 0
3 years ago
Read 2 more answers
P= $1000, r=5%, t= 2 years I=?
MArishka [77]
I = prt (P • R • T )
5 0
3 years ago
How would I find the integral of <img src="https://tex.z-dn.net/?f=%5Cint%5Cfrac%7Btdt%7D%7Bt%5E4%2B2%7D" id="TexFormula1" title
kotegsom [21]
Let t=\sqrt y, so that t^2=y, t^4=y^2, and \mathrm dt=\dfrac{\mathrm dy}{2\sqrt y}. Then

\displaystyle\int\frac t{t^4+2}\,\mathrm dt=\int\frac{\sqrt y}{2\sqrt y(y^2+2)}\,\mathrm dy=\frac12\int\frac{\mathrm dy}{y^2+2}

Now let y=\sqrt2\tan z, so that \mathrm dy=\sqrt2\sec^2z\,\mathrm dz. Then

\displaystyle\frac12\int\frac{\mathrm dy}{y^2+2}=\frac12\int\frac{\sqrt2\sec^2z}{(\sqrt2\tan z)+2}\,\mathrm dz=\frac{\sqrt2}4\int\frac{\sec^2z}{\tan^2z+1}\,\mathrm dz=\frac1{2\sqrt2}\int\mathrm dz=\dfrac1{2\sqrt2}z+C

Transform back to y to get

\dfrac1{2\sqrt2}\arctan\left(\dfrac y{\sqrt2}\right)+C

and again to get back a result in terms of t.

\dfrac1{2\sqrt2}\arctan\left(\dfrac{t^2}{\sqrt2}\right)+C
3 0
3 years ago
For a company picnic, Cindy ordered a box of
Ann [662]

Answer: 45

Step-by-step explanation:

60 x .75. = 45

7 0
3 years ago
Other questions:
  • HELP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    9·1 answer
  • May someone help me with this
    8·2 answers
  • In a certain country, the life expectancy of a woman born in 1995 was 80.2 years. Between 1995 and 2005, the life expectancy inc
    14·1 answer
  • TenthWhat is 19.83 rpunded to the nearest
    11·2 answers
  • What are the major arcs of o0 that contain point B?
    12·1 answer
  • What is the location of the point on the number line that is 3/7 of the way from A= -4 to B=17?
    6·2 answers
  • WILL MARK YOU BRAINLIEST!!!!
    15·1 answer
  • Consider functions f and g
    11·1 answer
  • WILL MARK BRAINLIEST
    8·1 answer
  • La ecuación de la recta que pasa por el punto P(1,3) y es paralela a la recta
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!