Answer:
6
Step-by-step explanation:
6+(6+2)+(6×3)=32
32÷(1+1+3)=6•••••2
So it's 6 and 6+2 and 6 times 3
which is 5 of number 6 plus 2
=6+(6+2)+(6×3)
=6+8+18
=32
Jffjjddjkdfjjffjdkdkjdfkdkdkdkdkdjdkdjdkdkdjdjjdkddkjd
<span>We can safely assume that 1212 is a misprint and the number of seats in a row exceeds the number of rows by 12.
Let r = # of rows and s = # of seats in a row.
Then, the total # of seats is T = r x s = r x ( r + 12), since s is 12 more than the # of rows.
Then
r x (r + 12) = 1564
or
r**2 + 12*r - 1564 = 0, which is a quadratic equation.
The general solution of a quadratic equation is:
x = (-b +or- square-root( b**2 - 4ac))/2a
In our case, a = 1, b = +12 and c = -1564, so
x = (-12 +or- square-root( 12*12 - 4*1*(-1564) ) ) / 2*1
= (-12 +or- square-root( 144 + 6256 ) ) / 2
= (-12 +or- square-root( 6400 ) ) / 2
= (-12 +or- 80) / 2
= 34 or - 46
We ignore -46 since negative rows are not possible, and have:
rows = 34
and
seats per row = 34 + 12 = 46
as a check 34 x 46 = 1564 = total seats</span>
You do the things in the parentheses first then multiply them by 2
Answer:
H0 : μ1 - μ2 = 0
H1 : μ1 - μ2 ≠ 0
-1. 34
0.1837
Step-by-step explanation:
Full time :
n1 = 125
x1 = 2.7386
s1 = 0.65342
Part time :
n2 = 88
x2 = 2.8439
s2 = 0.49241
H0 : μ1 - μ2 = 0
H1 : μ1 - μ2 ≠ 0
Test statistic :
The test statistic :
(x1 - x2) / sqrt[(s1²/n1 + s2²/n2)]
(2.7386 - 2.8439) / sqrt[(0.65342²/125 + 0.49241²/88)]
−0.1053 / sqrt(0.0034156615712 + 0.0027553)
-0.1053 /0.0785554
= - 1.34
Test statistic = - 1.34
The Pvalue :
Using df = smaller n - 1 = 88 - 1 = 87
Pvalue from test statistic score ;
Pvalue = 0.1837
Pvalue > α ; We fail to reject the null and conclude that the GPA does not differ.
At α = 0.01 ; the result is insignificant