Answer:
The acceleration of a point on the wheel is 11.43 m/s² acting radially inward.
Explanation:
The centripetal acceleration acts on a body when it is performing a circular motion.
Here, a point on the bicycle is performing circular motion as the rotation of the wheel produces a circular motion.
The centripetal acceleration of a point moving with a velocity
and at a distance of
from the axis of rotation is given as:

Here, 
∴ 
Therefore, the acceleration of a point on the wheel is 11.43 m/s² acting radially inward.
Answer:
d=9.462×10^15 meters
Explanation:
<u>Relation between distance, temps and velocity:</u>
d=v*t
t=1year*(365days/1year)*/(24hours/1day)*(3600s/1h)=31536000s
So:
1 light year=d=3*10^8m/s*3.154*10^7s=9.462×10^15 meters
This question is not complete.
The complete question is as follows:
One problem for humans living in outer space is that they are apparently weightless. One way around this problem is to design a space station that spins about its center at a constant rate. This creates “artificial gravity” at the outside rim of the station. (a) If the diameter of the space station is 800 m, how many revolutions per minute are needed for the “artificial gravity” acceleration to be 9.80m/s2?
Explanation:
a. Using the expression;
T = 2π√R/g
where R = radius of the space = diameter/2
R = 800/2 = 400m
g= acceleration due to gravity = 9.8m/s^2
1/T = number of revolutions per second
T = 2π√R/g
T = 2 x 3.14 x √400/9.8
T = 6.28 x 6.39 = 40.13
1/T = 1/40.13 = 0.025 x 60 = 1.5 revolution/minute
5.51 × 10 power 12 newton is answer
Answer:
Electric Current
Explanation:
The flow (or free movement) of these electrons through a wire.
Pretty sure :)