Answer:
θ = (7π / 3) rad
Explanation:
given,
displacement of simple harmonic motion along x-axis
equation is given as
x = 5 sin (π t + π/3 )
general equation of simple harmonic motion
x = A sin θ
θ is the phase angle
θ = π t + π/3
at t = 2 s


Phase of the motion at t =2 s is θ = (7π / 3) rad
The work done is by the centripetal force on mass m during an angular displacement of 2π revolutions mv²2π /r J
Centripetal force - a force acts on an moving object in circular path.
the centripetal force is given by
F= mv²/r (equation1)
Work done is given by
W = Fd (equation 2)
d = 2π
work is done by the centripetal force on mass m during an angular displacement of 2π revolutions is given by:
to calculate work done using equation 1 in 2 we get
W = mv² d/r
W = mv² × 2π /r J
The work done is by the centripetal force on mass m during an angular displacement of 2π revolutions mv²2π /r J
To know more about centripetal force :
brainly.com/question/13031430
#SPJ4
Both objects have the same electrical charge. Opposite charges attract. And if they were neutral they would not do anything.
Answer:
b
Explanation:
Brownian motion is the random movement of particles in a fluid due to their collisions with other atoms or molecules. ... Brownian motion takes its name from the Scottish botanist Robert Brown, who observed pollen grains moving randomly in water. He described the motion in 1827 but was unable to explain it.