Answer:
The final velocity is 28.14 m/s
Yes the angle of projection matters
Explanation:
Given;
initial velocity of the water balloon, u = 20 m/s
height of the building, h = 20 m
let the final speed of the ball when it hits the ground = v
The final speed is calculated as follows;
v² = u² + 2gh
v² = (20)² + 2(9.8)(20)
v² = 400 + 392
v² = 792
v = √792
v = 28.14 m/s
Yes the angle matters, if the balloon had been dropped at a certain angle, the final velocity would have been estimated using the following formula;

where;
θ is the angle of projection, which accounts for the vertical component of the velocity.
The period of any wave is the time it takes for its angle
to go from zero to 2pi .
The 'sin' function is a wave. The angle of this one is (8pi t).
When t=0, the angle is zero.
Wonderful.
Now, how long does it take for the angle to grow to 2pi ?
I*n other words, when is (8pi t) = 2pi ?
Divide each side by '2pi': . . . . . 4 t = 1
Divide each side by ' 4 ': . . . . . t = 1/4
And there you are. Every time 't' grows by 1/4, (8pi t) grows by 2pi.
So if you graph this simple harmonic motion described by 'd', you'll
see the graph wiggle up and down with a period of 1/4 .
speed increases with temp maybe
Answer:
Longest wavelength, lowest intensity
Explanation: