11tens the plus together equals to 110
Answer: y =
x−3
If I Helped, Please Mark Me As Brainliest, Have A Great Day :D
(a)
The average rate of change of f on the interval 0 ≤ x ≤ π is
![\displaystyle f_{avg\Delta} = \frac{f(\pi) - f(0)}{\pi - 0} =\frac{-e^\pi-1}{\pi}](https://tex.z-dn.net/?f=%5Cdisplaystyle%0Af_%7Bavg%5CDelta%7D%20%3D%20%5Cfrac%7Bf%28%5Cpi%29%20-%20f%280%29%7D%7B%5Cpi%20-%200%7D%20%3D%5Cfrac%7B-e%5E%5Cpi-1%7D%7B%5Cpi%7D%20)
____________
(b)
![f(x) = e^{x} cos x \implies f'(x) = e^x \cos(x) - e^x \sin(x) \implies \\ \\ f'\left(\frac{3\pi}{2} \right) = e^{3\pi/2} \cos(3\pi/2) - e^{3\pi/2} \sin(3\pi/2) \\ \\ f'\left(\frac{3\pi}{2} \right) = 0 - e^{3\pi/2} (-1) = e^{3\pi/2}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20e%5E%7Bx%7D%20cos%20x%20%5Cimplies%20f%27%28x%29%20%3D%20e%5Ex%20%5Ccos%28x%29%20-%20e%5Ex%20%5Csin%28x%29%20%5Cimplies%20%5C%5C%20%5C%5C%0Af%27%5Cleft%28%5Cfrac%7B3%5Cpi%7D%7B2%7D%20%5Cright%29%20%3D%20e%5E%7B3%5Cpi%2F2%7D%20%5Ccos%283%5Cpi%2F2%29%20-%20e%5E%7B3%5Cpi%2F2%7D%20%5Csin%283%5Cpi%2F2%29%20%5C%5C%20%5C%5C%0Af%27%5Cleft%28%5Cfrac%7B3%5Cpi%7D%7B2%7D%20%5Cright%29%20%3D%200%20-%20e%5E%7B3%5Cpi%2F2%7D%20%28-1%29%20%3D%20e%5E%7B3%5Cpi%2F2%7D)
The slope of the tangent line is
![e^{3\pi/2}](https://tex.z-dn.net/?f=e%5E%7B3%5Cpi%2F2%7D)
.
____________
(c)
The absolute minimum value of f occurs at a critical point where f'(x) = 0 or at endpoints.
Solving f'(x) = 0
![f'(x) = e^x \cos(x) - e^x \sin(x) \\ \\ 0 = e^x \big( \cos(x) - \sin(x)\big)](https://tex.z-dn.net/?f=f%27%28x%29%20%3D%20e%5Ex%20%5Ccos%28x%29%20-%20e%5Ex%20%5Csin%28x%29%20%5C%5C%20%5C%5C%0A0%20%3D%20e%5Ex%20%5Cbig%28%20%5Ccos%28x%29%20-%20%5Csin%28x%29%5Cbig%29)
Use zero factor property to solve.
![e^x \ \textgreater \ 0\forall x \in \mathbb{R}](https://tex.z-dn.net/?f=e%5Ex%20%5C%20%5Ctextgreater%20%5C%20%200%5Cforall%20x%20%5Cin%20%5Cmathbb%7BR%7D)
so that factor will not generate solutions.
Set cos(x) - sin(x) = 0
![\cos (x) - \sin (x) = 0 \\ \cos(x) = \sin(x)](https://tex.z-dn.net/?f=%5Ccos%20%28x%29%20-%20%5Csin%20%28x%29%20%3D%200%20%5C%5C%0A%5Ccos%28x%29%20%3D%20%5Csin%28x%29%20)
cos(x) = 0 when x = π/2, 3π/2, but x = π/2. 3π/2 are not solutions to the equation. Therefore, we are justified in dividing both sides by cos(x) to make tan(x):
![\displaystyle\cos(x) = \sin(x) \implies 0 = \frac{\sin (x)}{\cos(x)} \implies 0 = \tan(x) \implies \\ \\ x = \pi/4,\ 5\pi/4\ \forall\ x \in [0, 2\pi]](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ccos%28x%29%20%3D%20%5Csin%28x%29%20%5Cimplies%200%20%3D%20%5Cfrac%7B%5Csin%20%28x%29%7D%7B%5Ccos%28x%29%7D%20%5Cimplies%200%20%3D%20%5Ctan%28x%29%20%5Cimplies%20%5C%5C%20%5C%5C%0Ax%20%3D%20%5Cpi%2F4%2C%5C%205%5Cpi%2F4%5C%20%5Cforall%5C%20x%20%5Cin%20%5B0%2C%202%5Cpi%5D)
We check the values of f at the end points and these two critical numbers.
![f(0) = e^1 \cos(0) = 1](https://tex.z-dn.net/?f=f%280%29%20%3D%20e%5E1%20%5Ccos%280%29%20%3D%201)
![\displaystyle f(\pi/4) = e^{\pi/4} \cos(\pi/4) = e^{\pi/4} \frac{\sqrt{2}}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%28%5Cpi%2F4%29%20%3D%20e%5E%7B%5Cpi%2F4%7D%20%5Ccos%28%5Cpi%2F4%29%20%3D%20e%5E%7B%5Cpi%2F4%7D%20%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D)
![\displaystyle f(5\pi/4) = e^{5\pi/4} \cos(5\pi/4) = e^{5\pi/4} \frac{-\sqrt{2}}{2} = -e^{\pi/4} \frac{\sqrt{2}}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%285%5Cpi%2F4%29%20%3D%20e%5E%7B5%5Cpi%2F4%7D%20%5Ccos%285%5Cpi%2F4%29%20%3D%20e%5E%7B5%5Cpi%2F4%7D%20%20%5Cfrac%7B-%5Csqrt%7B2%7D%7D%7B2%7D%20%3D%20-e%5E%7B%5Cpi%2F4%7D%20%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D)
![f(2\pi) = e^{2\pi} \cos(2\pi) = e^{2\pi}](https://tex.z-dn.net/?f=f%282%5Cpi%29%20%3D%20e%5E%7B2%5Cpi%7D%20%5Ccos%282%5Cpi%29%20%3D%20e%5E%7B2%5Cpi%7D)
There is only one negative number.
The absolute minimum value of f <span>on the interval 0 ≤ x ≤ 2π is
![-e^{5\pi/4} \sqrt{2}/2](https://tex.z-dn.net/?f=-e%5E%7B5%5Cpi%2F4%7D%20%5Csqrt%7B2%7D%2F2)
____________
(d)
The function f is a continuous function as it is a product of two continuous functions. Therefore,
![\lim_{x \to \pi/2} f(x) = f(\pi/2) = e^{\pi/2} \cos(\pi/2) = 0](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5Cpi%2F2%7D%20f%28x%29%20%3D%20f%28%5Cpi%2F2%29%20%3D%20e%5E%7B%5Cpi%2F2%7D%20%5Ccos%28%5Cpi%2F2%29%20%3D%200)
g is a differentiable function; therefore, it is a continuous function, which tells us
![\lim_{x \to \pi/2} g(x) = g(\pi/2) = 0](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20%5Cpi%2F2%7D%20g%28x%29%20%3D%20g%28%5Cpi%2F2%29%20%3D%200)
.
When we observe the limit
![\displaystyle \lim_{x \to \pi/2} \frac{f(x)}{g(x)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%20%5Cpi%2F2%7D%20%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D)
, the numerator and denominator both approach zero. Thus we use L'Hospital's rule to evaluate the limit.
![\displaystyle\lim_{x \to \pi/2} \frac{f(x)}{g(x)} = \lim_{x \to \pi/2} \frac{f'(x)}{g'(x)} = \frac{f'(\pi/2)}{g'(\pi/2)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Clim_%7Bx%20%5Cto%20%5Cpi%2F2%7D%20%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%3D%20%5Clim_%7Bx%20%5Cto%20%5Cpi%2F2%7D%20%5Cfrac%7Bf%27%28x%29%7D%7Bg%27%28x%29%7D%20%3D%20%5Cfrac%7Bf%27%28%5Cpi%2F2%29%7D%7Bg%27%28%5Cpi%2F2%29%7D%20)
![f'(\pi/2) = e^{\pi/2} \big( \cos(\pi/2) - \sin(\pi/2)\big) = -e^{\pi/2} \\ \\ g'(\pi/2) = 2](https://tex.z-dn.net/?f=f%27%28%5Cpi%2F2%29%20%3D%20e%5E%7B%5Cpi%2F2%7D%20%5Cbig%28%20%5Ccos%28%5Cpi%2F2%29%20-%20%5Csin%28%5Cpi%2F2%29%5Cbig%29%20%3D%20-e%5E%7B%5Cpi%2F2%7D%20%5C%5C%20%5C%5C%0Ag%27%28%5Cpi%2F2%29%20%3D%202)
thus
![\displaystyle\lim_{x \to \pi/2} \frac{f(x)}{g(x)} = \frac{-e^{\pi/2}}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Clim_%7Bx%20%5Cto%20%5Cpi%2F2%7D%20%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%3D%20%5Cfrac%7B-e%5E%7B%5Cpi%2F2%7D%7D%7B2%7D)
</span>
Answer:
C. 873.67
Step-by-step explanation:
399.17 + 150 + 69 + 200 + 55.5 = 873.67
Answer:
24
Step-by-step explanation:
![9 + 15](https://tex.z-dn.net/?f=9%20%2B%2015)
Add 9+15 (Use 15+9 if necessary.)
If you got this result:
![19 + 5 = 24](https://tex.z-dn.net/?f=19%20%2B%205%20%3D%2024)
You are right.
![5 + 9 = 14](https://tex.z-dn.net/?f=5%20%2B%209%20%3D%2014)
Add
![14 + 10](https://tex.z-dn.net/?f=14%20%2B%2010)
and this is the end result:
![= 24](https://tex.z-dn.net/?f=%20%3D%2024)
So, 15 + 9 is 24.