1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alekssandra [29.7K]
3 years ago
9

A hiker begins a trip by first walking 22.2 km

Mathematics
1 answer:
Dominik [7]3 years ago
4 0

9514 1404 393

Answer:

  20.6 km

Step-by-step explanation:

Using (East, North) coordinates, the hiker's position ends up being ...

  22.2(cos(-45°), sin(-45°)) +40.1(cos(65°), sin(65°))

We're only interested in the second coordinate of this total, which is ...

  22.2sin(-45°) +40.1sin(65°) ≈ -15.698 +36.343 = 20.645 . . . km

The y-component of the hiker's position at the end of the second day is 20.6 km north of her starting location.

You might be interested in
Q6 Q20.) Solve the equation for x in the interval ​[0,2π).
Marysya12 [62]
Hello there!

See picture below...

Let me know if you have any questions about the answer. As always, it is my pleasure to help students like you!


8 0
3 years ago
What expression is equivalent to 8/9 divided 3/4
Semmy [17]

Answer:

32/27 or 1/5/27 or a repeating decimal 1.185

Step-by-step explanation:

4 0
3 years ago
Problem Solving (M1) About 100,000 people live in a town. The number 100,000 can be written as 10n, where n is a whole number. W
vlabodo [156]

Answer:

n = 5

Step-by-step explanation:

100,000 = 10^n

Take the log of both sides

log 100,000 = log 10^n

log 100,000 = n * log 10

Dividing both sides by log 10

log 100,000 / log 10 = n * log 10 / log 10

n = log 100,000 / log 10

= 5 / 1

n = 5

4 0
3 years ago
Help based offf order of operations please help
JulijaS [17]

Answer:

The answer for :

h. \:  \:   \: \frac{5}{6}

i. \:  \:  \:  \frac{35}{32}

k. \:  \:  \:  \frac{-29}{20}

l. \:  \:  \:  \frac{13}{15}

Step-by-step explanation:

Question h:

\frac{2}{3}  + ( \frac{1}{3}  \times  \frac{1}{2} )

=  \frac{2}{3}  +  \frac{1}{6}

=  \frac{2 \times 2}{3 \times 2}  +  \frac{1}{6}

=  \frac{4}{6}  +  \frac{1}{6}

=  \frac{5}{6}

Question i:

\frac{7}{8}  +  \frac{1}{4}  \times ( \frac{3}{2}  -  \frac{5}{8} )

=  \frac{7}{8}  +  \frac{1}{4}  \times ( \frac{3 \times 4}{2 \times 4}  -  \frac{5}{8} )

= \frac{7}{8}  +  \frac{1}{4}  \times ( \frac{12}{8}  -  \frac{5}{8} )

=  \frac{7}{8}  +  (\frac{1}{4}  \times  \frac{7}{8} )

=  \frac{7}{8}  +  \frac{7}{32}

=  \frac{7  \times 4}{8 \times 4}  +  \frac{7}{32}

=  \frac{28}{32}  +  \frac{7}{32}

=  \frac{35}{32}

Question k:

\frac{3}{4}  - ( \frac{12}{7}  \div  \frac{12}{21} ) +  \frac{4}{5}

=  \frac{3}{4}  - ( \frac{12}{7}  \times  \frac{21}{12} ) +  \frac{4}{5}

=  \frac{3}{4}  -  \frac{3}{1}  +  \frac{4}{5}

= \frac{3 \times 5}{4 \times 5}  -  \frac{3 \times 20}{1 \times 20} +  \frac{4 \times 4}{5 \times 4}

=  \frac{15}{20}   -   \frac{60}{20} +  \frac{16}{20}

=  -  \frac{29}{20}

Question l:

\frac{5}{2}  \times ( \frac{2}{3}  -  \frac{1}{5} ) - ( \frac{2}{5}  \div  \frac{4}{3} )

=  \frac{5}{2}  \times ( \frac{2 \times 5}{3 \times 5}  -  \frac{1 \times 3}{5 \times 3} ) - ( \frac{2}{5}  \times  \frac{3}{4} )

=  \frac{5}{2}  \times ( \frac{10}{15}  -  \frac{3}{15} ) -  \frac{3}{10}

=  (\frac{5}{2} \times   \frac{7}{15}) -  \frac{3}{10}

=  \frac{7}{6}  -  \frac{3}{10}

=  \frac{7 \times 5}{6 \times 5}  -  \frac{3 \times 3}{10 \times 3}

=  \frac{35}{30}  -  \frac{9}{30}

=  \frac{26}{30}

=  \frac{13}{15}

8 0
3 years ago
Can someone please help me with these! I don’t understand them
Vera_Pavlovna [14]

Answer:

Question #1

m∠4 + m∠7 = 180° - Given.

∠4 and ∠7 are supplementary angles - Definition of supplementary angles.

∠7 and ∠2 form a linear pair - Definition of linear pair.

∠7 and ∠2 are supplementary angles - Definition of linear pair.

m∠7 + m∠2 = 180° - Definition of supplementary angles.

m∠2 = m∠4 - Substitution property.

c ║ d - Converse of corresponding angles postulate.

Question #2

m∠3 = m∠8 - Given.

∠8 and ∠6 form a linear pair - Definition of linear pair.

∠8 and ∠6 are supplementary angles - Definition of linear pair.

m∠8 + m∠6 = 180° - Definition of supplementary angles.

∠3 and ∠6 are supplementary angles - Substitution property.

m∠3 + m∠6 = 180° - Definition of supplementary angles.

Question #3

p ║ q - Given.

∠1 ≅ ∠5 - Given.

∠1 ≅ ∠2 - Alternate interior angle theorem.

∠2 ≅ ∠5 - Substitution property.

~Hope this helps!~

5 0
3 years ago
Other questions:
  • Please help and thank you
    6·1 answer
  • Someone help!!! the image is below with question!
    9·1 answer
  • Write the ordered pair that represents MP. Then find the magnitude of MP.
    15·1 answer
  • Solve using the substitution method<br> x-7y=19<br> 5x=-2y-16
    12·2 answers
  • A communication tower is built on the slope of a hill. A surveyor, 50m uphill from
    5·1 answer
  • Find angle sum therom ​
    15·1 answer
  • Question in the picture
    15·1 answer
  • What is the total price of a $45.79 item when a 7% taxe is added
    8·1 answer
  • Hello! How to sketch the graph?
    9·1 answer
  • I need hellp answer it
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!