1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Radda [10]
2 years ago
8

An electrical appliances

Physics
1 answer:
sladkih [1.3K]2 years ago
6 0

Answer:

Explanation:

(1) I= 1.5W/240V =6.25mA

(2) Energy= (1.5J/s)×(2×60×60 s)=10.8 KJ

You might be interested in
PLEASE HELP : What happens in obese mice? (Physiology)
irina1246 [14]

Answer and

Explanation:

The gut microbiota has recently emerged as an important, and previously unappreciated, player in host physiology (1). In particular, the gut microbiota contributes to a variety of physiological and pathophysiological processes in the host including immune disorders (2–4), atherosclerosis (5), irritable bowel syndrome (6, 7), blood pressure regulation (8), and chronic kidney disease (9, 10). Bacteria residing in the human gut are an important component of human physiology: the total wet weight of gut microbes in the human has been estimated to be 175 g–1.5 kg (11, 12), and the cells of the microbiota outnumber human cells by 10:1 (1). These bacteria interact with the immune system of the host (13), and secrete a variety of metabolites, which enter host circulation and can affect a variety of physiological parameters (8, 14), reviewed in Ref. (15). In fact, metabolites produced by the gut microbiota have been found to play key roles in renal disease (16), blood pressure regulation (8), and immune disorders (2–4). Therefore, just as we consider the genetic background of an animal or an individual to be an important contributing factor to their physiology, so too must we consider the genetic background of the microbiota associated with that animal.

Gut microbiota vary greatly amongst laboratory animals, and these differences result in notable differences in experimental results. Mice of the same strain from different vendors have different microbiota profiles (17), and similarly, the same mice housed at different institutions have different microbiota profiles (18, 19). Conversely, inoculating two different inbred mouse strains with the same gut bacteria leads to differences in host gene expression between the two mouse strains (20). Clearly, there is a complex interplay between the genetics of the microbiota and that of the host organism, which has only recently begun to be appreciated.

Go to:

Gut Microbiota as an Experimental Parameter

Examples in the literature have highlighted the important and unexpected ways in which gut microbiota can affect a variety of experimental parameters. In a series of studies, Vijay-Kumar et al. (13, 21) reported that although TLR5 null animals initially had a colitis phenotype, when these mice were “rederived” and their gut microbiota altered, the colitis phenotype was greatly attenuated, and instead the null animals exhibited metabolic syndrome. In addition, Lathrop et al. put forward a model by which T-cells are educated not only by self/non-self mechanisms, but also by microbiota-derived “non-self” antigens (22). Accordingly, they found that the presence or absence of microbiota determined whether T cells would induce colitis in mice. Finally, Yang et al. reported that when the same knockout mice were housed at two different institutions, they had markedly different microbiota profiles – and the mice at one institution (MIT) were quite susceptible to colitis, whereas mice at the other institution (MHH) failed to develop any significant pathology under the same conditions (19). Unequivocally, altering gut microbiota – even by housing animals at different institutions – can have dramatic effects on the phenotype observed.

Go to:

Gut Microbiota and Obesity and Diabetes

It is important to note that not only can microbiota affect host physiology, but the gut microbiota are not necessarily stable over time. Rather, gut microbiota can change or shift as a result of experimental manipulation (in animals) or changes in lifestyle or nutrition (in humans). It is now appreciated that there are “shifts” in microbiota that occur in obesity in mice, rats, and humans (23–26). In one study, Turnbaugh et al. (25) examined human female twin pairs concordant for leanness or obesity, and found that obesity was associated with phylum-level changes in microbiota.

7 0
3 years ago
Give examples of the one element from the alkaline earth metal group and one from the noble gases group. Include each element at
zhuklara [117]
Alkali metals: left column of your periodic table (not hydrogen, but anything below it). They have one valence electron, which they are happy to share in a reaction.

Halogens: second column from the right of your periodic table. They are one electron short of a full shell, so they are reactive in the opposite way that alkalis are--they want electrons.

Atomic number (number of protons) is the big number on the periodic table square. Hydrogen's is 1.

Atomic mass is a little number down below. For example, Hydrogen's is 1.008.

Neutrons are a tricky subject, because different isotopes of the same element can have different numbers of neutrons. You can't generally get this from the atomic mass, because the atomic mass is a weighted average of naturally occurring isotopes. Hydrogen can have 0,1, or 2 neutrons. To answer this, you'd have to choose a particular isotope from the table of isotopes (a completely different chart from the periodic table) which has a certain number of neutrons: n = weight - Z.

Valence electrons are the electrons in the outermost shell. (The column of the table).

<span> Number of principal shells is the row of the periodic table. </span>
8 0
3 years ago
You use 8x binoculars were used on a warbler (14cm long) in a tree 18cm away. What angle (in degrees) does the image of the warb
mafiozo [28]

Answer:

The angle it subtend on the retina is  \theta_z = 0.44586^o    

Explanation:

From the question we are told that

     The length of the warbler is  L = 14cm = \frac{14}{100} = 0.14m

      The distance from the binoculars is    d = 18cm = \frac{18}{100} = 0.18m

        The magnification of the binoculars is  M =8

Without the 8 X binoculars the  angle made with the angular size of the object  is mathematically represented as

          \theta = \frac{L}{d}

        \theta  = \frac{0.14}{0.18}

           = 0.007778 rad

Now magnification can be represented mathematically as

         M = \frac{\theta _z}{\theta}

Where \theta_z is the angle the image of the warbler subtend on your retina when the   binoculars i.e the  binoculars zoom.

So

      \theta_z = M * \theta

=>    \theta_z =8 * 0.007778

            = 0.0622222224

Generally the conversion to degrees can be mathematically evaluated as

             \theta_z = 0.062222224 * (\frac{360 }{2 \pi rad} )

              \theta_z = 0.44586^o  

7 0
3 years ago
Which type of radiation has the highest penetrating power?
Papessa [141]
<span>electromagnetic.........</span>
6 0
3 years ago
What is similar and different about ionic and covalent bonds?
12345 [234]
The similarity is that they both are types of bonds in molecules.
Ionic bonds are between a metal and a nonmetal.
Covalent bonds are between two nonmetals.
8 0
3 years ago
Other questions:
  • An Arrow (1 kg) travels with velocity 30 m/s to the right when it pierces an apple (2 kg) which is initially at rest. After the
    14·1 answer
  • What is solar made from
    12·1 answer
  • An object of mass 82kg is accelerated upward at 3.2m/s/s. what force is required
    11·1 answer
  • An ionized oxygen molecule (O2+) at point A has charge +e and moves at 1.24 ✕ 103 m/s in the positive x-direction. A constant el
    14·1 answer
  • One way to measure g on another planet or moon by remote sensing is to measure how long it takes an object to fall a given dista
    9·1 answer
  • The distance versus time graph for Object A and Object B are shown.
    9·2 answers
  • What is Newton's second law of motion? ​
    10·2 answers
  • Can an object emit different portions of the electromagnetic spectrum at the same time?
    15·1 answer
  • Which proportion can you use to find the value of a? (posted in this category because of bots)
    10·1 answer
  • A car traveling at 65 mph is an example of its
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!