Answer:
(a) 7.72×10⁵ J
(b) 4000 J
(c) 1.82×10⁻¹⁶ J
Explanation:
Kinetic Energy: This can be defined energy of a body due to its motion. The expression for kinetic energy is given as,
Ek = 1/2mv²................... Equation 1
Where Ek = Kinetic energy, m = mass, v = velocity
(a)
For a moving automobile,
Ek = 1/2mv².
Given: m = 2.0×10³ kg, v = 100 km/h = 100(1000/3600) m/s = 27.78 m/s
Substitute into equation 1
Ek = 1/2(2.0×10³)(27.78²)
Ek = 7.72×10⁵ J
(b)
For a sprinting runner,
Given: m = 80 kg, v = 10 m/s
Substitute into equation 1 above,
Ek = 1/2(80)(10²)
Ek = 40(100)
Ek = 4000 J
(c)
For a moving electron,
Given: m = 9.10×10⁻³¹ kg, v = 2.0×10⁷ m/s
Substitute into equation 1 above,
Ek = 1/2(9.10×10⁻³¹)(2.0×10⁷)²
Ek = 1.82×10⁻¹⁶ J
The correct answer is letter A. 6 millimeters. <span>If an object 18 millimeters high is placed 12 millimeters from a diverging lens and the image is formed 4 millimeters in front of the lens, the height of the image is 6 millimeters.
</span>
Solution:
18 / x = 12 / 4
12x = 72
x = 6mm
The subscript after the element indicates the number of atoms of that element in the molecule. So, in H20, the subscript after the H, which stands for hydrogen, is 2. This means that there are 2 hydrogen atoms in a water molecule.
Hope this helps! :)
Answer:
Torque decreases .
Explanation:
The tape is pulled at constant speed , speed v is constant , so there is
v = ω r where ω is angular speed and r is radius , As radius decreases , angular speed ω increases , So there is angular acceleration .
Let it be α . Let I be moment of inertia of reel .
Reel is in the form of disc
I = 1/2 m r²
I x α = torque
1/2 m r² x α = torque
As the reel is untapped , its mass decreases , r also decreases , so torques also decreases .
Answer:
a) True.
Explanation:
If you turn the wheel in the direction of the turn before beginning the turning maneuver then it's possible that there might be not enough space available for turning and also if you are waiting for the traffic to get clear with rear ended then it will get pushed forward onto the coming traffic.