The four equations for acceleration are obtained from the three equations of motion and from second law of motion.
Explanation:
Acceleration is defined as the rate of change of velocity with respect to time. So the change in velocity with respect to time can be determined using the three equations of motions.
So from the first equation of motion, v = u + at , we can determine the value of acceleration if time taken, final and initial velocity is known. The equation can be re-written as 
Similarly, from the second equation of motion, s = ut + 1/2 at², we can determine the equation for acceleration as 
So this is second equation for acceleration.
Then from the third equation of motion, 
the acceleration equation is determined as 
In addition to these three equation, another equation is present to determine the acceleration with respect to force from the Newton's second law of motion. F = Mass × acceleration. From this, acceleration = Force/mass.
So, these are the four equations for acceleration.
Answer:
Less than Mercury's
Explanation:
According to third Kepler's law, the square of the planet's orbital period is proportional to the cube of the average orbital radius of the planet's orbit. The constant of proportionality depends only on the mass of the star, recall that 51 Peg has the same mass as the Sun. Since the orbital period of this planet is less than Mercury's, its average orbital radius is less than Mercury's.
Answer:
A) Impulse is the same for both the objects
B) The higher is the speed, the greater will be the height.
Explanation:
Part a)
The time of interaction of the two bodies i.e the hanging mass and the stick is same. Thus, force caused by dart on the block = force caused by block on the dart. Hence, impulse is the same for both the objects.
Part B
The energy will be conserved in the entire reaction process
Hence, Kinetic energy = potential energy
0.5Mv^2 = gh(md+mb)
H is directly proportional to the square of speed.
Hence, the higher is the speed, the greater will be the height.
Answer:
The speed traveled by the car is 40 meter per second.
Explanation:
The formula for the relation between the power and the force is as follows:
P = Fv
Where F is the force and v is the speed.
As given
To travel at constant speed, a car engine provides 24KW of useful power. The driving force on the car is 600N.
F = 600 N
Convert power from KW to W.
1 KW = 1000 W
24 KW = 24 × 1000 W
= 24000 W
Thus
P = 24000 W
Put these values in the formula.
24000 = 600 × v
24000 = 600v

v = 40 meter per second .
Therefore the speed of the car is 40 meter per second .