<span>Carnot cycle efficiency = work done/heat supplied = (Th - Tc)/Th
where, Th is temperature of hot reservoir and Tc is temperature of cold reservoir.
we have given the values as Heat supplied = 1.3 MJ or 1300 KJ, Th = 427 degree C and Tc = 90 degree C.
converting degree Celsius to kelvin temperatures, Th = 427 + 273 = 700 K
Tc = 90 +273 = 363
solving equations, (700 - 363)/700 = work done / 1300
work done = 625.86 KJ i.e. 0.626 MJ work is done .</span>
Their cognitive skills and their ability to learn
Answer:

Explanation:
<h3>Given Data:</h3>
Mass = m = 68 kg
Velocity = v = 30 m/s
Time = 2 hours = 2 × 60 × 60 = 7200 s
<h3>Required:</h3>
Force = F = ?
<h3>Formula to be used:</h3>

<h3>Solution:</h3>
![\displaystyle F = \frac{(68)(30)}{7200} \\\\F = \frac{2040}{7200} \\\\F = 0.28 N\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20F%20%3D%20%5Cfrac%7B%2868%29%2830%29%7D%7B7200%7D%20%5C%5C%5C%5CF%20%3D%20%5Cfrac%7B2040%7D%7B7200%7D%20%5C%5C%5C%5CF%20%3D%200.28%20N%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:
faster; more kinetic energy
Explanation:
Expression to calculate energy from voltage: E= V*Q where E= energy, V= voltage, and Q= charge
Additional help:
-To find the Voltage ( V )
[ V = I x R ] V (volts) = I (amps) x R (Ω)
-To find the Current ( I )
[ I = V ÷ R ] I (amps) = V (volts) ÷ R (Ω)
-To find the Resistance ( R )
[ R = V ÷ I ] R (Ω) = V (volts) ÷ I (amps)
I hope that helps to some extent-