You habe already the formula, what's wrong then? it's simple
A = F/M
A = 2400/800
A = 24/8
A = 3 m/s²
Answer:
c. "Ohmic" is when the plot of I [Amp] versus V [Volt] has a slope equal to R.
Explanation:
A resistor is said to be Ohmic if it obeys ohms law. In am Ohmic resistor, the resistance is constant regardless of the current passing through it. Graphically, an ohmic resistor as a linear relationship when its current and voltage relationship is presented graphically.
Answer:
0.71 m/s
Explanation:
We find the time it takes the stone to hit the water.
Using y = ut - 1/2gt² where y = height of bridge, u = initial speed of stone = 0 m/s, g = acceleration due to gravity = -9.8 m/s² (negative since it is directed downwards)and t = time it takes the stone to hit the water surface.
So, substituting the values of the variables into the equation, we have
y = ut - 1/2gt²
82.2 m = (0m/s)t - 1/2( -9.8 m/s²)t²
82.2 m = 0 + (4.9 m/s²)t²
82.2 m = (4.9 m/s²)t²
t² = 82.2 m/4.9 m/s²
t² = 16.78 s²
t = √16.78 s²
t = 4.1 s
This is also the time it takes the raft to move from 5.04 m before the bridge to 2.13 m before the bridge. So, the distance moved by the raft in time t = 4.1 s is 5.04 m - 2.13 m = 2.91 m.
Since speed = distance/time, the raft's speed v = 2.91 m/4.1 s = 0.71 m/s
Answer:
1) p₀ = 45000 N / s
, p₀ '= 1800
, b) I = -45000 N s
, I = 1800 Ns
Explanation:
Impulse equals the change in momentum
I = Δp
1) the initial moment of the car
p₀ = M v
p₀ = 1500 30
p₀ = 45000 N / s
the change at the moment is
Δp = 45000
because the end the car is stopped
moment of the person
P₀ ’= m v
p₀ '= 60 30
p₀ '= 1800
D₀ '= 1800
2) of the momentum change impulse ratio
car
I = Δp
I = -45000 N s
person
I = Δpo '
I = 1800 Ns
3) the object that give the momentum to stop the wall motoring
The person is stopped by the impulse given by the car
a) This area is the one that absorbs most of the vehicle impulse
be) If using a safety painter, the time during which the greater force will act, therefore the lessons decrease
c) The air bag helps reduction in the speed of the person relatively quickly.
This happens<span> at the boiling </span>temperature<span> of every substance that can vaporize. At the boiling </span>temperature<span>, adding </span>heat<span> energy converts the liquid into a gas WITHOUT RAISING THE </span>TEMPERATURE<span>. Adding </span>heat<span> to a boiling liquid is an important exception to general rule that more </span>heat<span> makes a higher </span>temperature<span>.</span>