Since volume and temperature are constant, this means that pressure and <u>number of moles</u> are <u>directly </u>proportional. the sample with the largest <u>number of moles</u> will have the <u>high </u>pressure.
Since, the ideal gas equation is also called ideal gas law. So, according to ideal gas equations,
PV = nRT
- P is pressure of the sample
- T is temperature
- V is volume
- n is the number of moles
- R is universal gas constant
At constant volume and temperature the equation become ,
P ∝ nR
since, R is also constant. So, conclusion of the final equation is
P ∝ n
The number of moles and pressure of the sample is directly proportion. So, on increasing number of moles in the sample , pressure of the sample also increases.
learn about ideal gas law
brainly.com/question/4147359
#SPJ4
Answer:
Explanation:
Given:
V1 = 200 ml
T1 = 20 °C
= 20 + 273
= 293 K
P1 = 3 atm
P2 = 2 atm
V2 = 400 ml
Using ideal gas equation,
P1 × V1/T1 = P2 × V2/T2
T2 = (2 × 400 × 293)/200 × 3
= 234400/600
= 390.67 K
= 390.67 - 273
= 117.67 °C
Explanation:
hope it helps you understand moles
Answer:
Nope unless u like the ex it’s super wrong but if u like their friend ur good
Explanation: