Answer:
Plants consume carbon through transpiration
Explanation:
In transpiration, plants lose water vapor through the stomata in their leaves. No carbon is involved in transpiration, which has an outbound direction. Nothing can be consumed through the stomata when vapor is going out of the plant. It´s like trying to get in through the exit.
Answer:
Middle: Self heating containers are really expensive but are useful because they are easy to use, portable, and can be recycled, unlike a camp stove which is not as easily moved.
Explanation:
i neeed a better image for the first an last boo<3
Empirical formula of ionic compound is FeO. In which the composition of atoms is 1 : 1.
Empirical formula of an ionic compound is defined as the formula which gives whole number ratio of atoms of various elements present in molecule of compund.
mass of iron in compound = 34.95 g
molar mass of iron = 55.8 g
mass of oxygen in compound = 15.05 g
molar mass of oxygen = 32 g
number of moles of iron present in the compound are ratio of mass of iron in compound/ molar mass of iron
number of moles of iron in compound= 34.95 / 55.8 = 0.6263 ~ 1
number of moles oxygen in compound= 15.05/ 32 = 0.473 ~ 0.5
the ratio of the number of oxygen atoms to number of iron atoms present in one formula unit of iron compund is 2×0.5 / 1 = 1 : 1
Hence , the required empirical formula of iron compound is FeO.
To learn more about Emiprical formula, refer:
brainly.com/question/1439914
#SPJ4
Answer:
<em>The correct option is D) Cows release all of their energy as heat.</em>
Explanation:
Not all of the energy gets travelled from one trophic level to another. Observations have shown that only 10% of the energy travels from one trophic level to another when an organism of the upper trophic level consumes an organism of the lower trophic level. This is because most of the energy is lost by organisms as heat.
So, let's consider that there is 100% energy in plants that the cow eat. The cows will only receive 10% of the energy from the plants. The organisms that will eat the cows will only receive 1%of the energy.
2 O2 + CH4 CO2 + 2 H2O
<span>What mass of CH4 is required to completely react with 100 grams of O2? </span>
<span>mass CH4 = 100 g O2 x (1 mol O2 / 32 g) x (1 mol CH4 / 2 mol O2) x (16.05 g / 1 mol CH4) </span>
<span> 25 grams CH4
</span>