Respuesta:
90.0 %
Explicación:
Paso 1: Escribir la ecuación química balanceada
N₂ + 3 H₂ ⇒ 2 NH₃
Paso 2: Calcular el rendimiento teórico de NH₃ a partir de 140 g de N₂
En la ecuación balanceada, participan de N₂: 1 mol × 28.01 g/mol = 28.01 g y de NH₃: 2 mol × 17.03 g/mol = 34.06 g.
140 g N₂ × 34.06 g NH₃ /28.01 g N₂ = 170 g NH₃
Paso 3: Calcular el rendimiento porcentual de NH₃
El rendimiento experimental de NH₃ es 153 g. Podemos calcular el rendimiento porcentual usando la siguiente fórmula.
R% = rendimiento experimental / rendimiento teórico × 100%
R% = 153 g / 170 g × 100% = 90.0 %
A. Formation of a gas. You can tell a chemical reaction has occurred through: formation of a precipitate, formation of a gas (also known as bubbles) unexpected color change, unexpected odor change, temperature change.
Answer:
Kd = [Ag⁺] × [NH₃]² / [Ag(NH₃)₂⁺]
Explanation:
Let's consider the dissociation reaction of the complex ion Ag(NH₃)₂⁺.
Ag(NH₃)₂⁺(aq) ⇄ Ag⁺(aq) + 2 NH₃(aq)
The dissociation constant, Kd, is the equilibrium constant for the dissociation of the complex ion, that is, it is equal to the product of the concentrations of the products raised to their stoichiometric coefficients divided by the product of the concentrations of the reactants raised to their stoichiometric coefficients.
The dissociation constant for this reaction is:
Kd = [Ag⁺] × [NH₃]² / [Ag(NH₃)₂⁺]
<em>A conclusion that can be drawn about the movement of life to land is that;</em>
B.) As land plants became more complex, animal life did as well.
<u>The plants have also adapted to reduce the water loss across cell walls. This is made possible by waxy cuticles.</u>