Heated, it shrinks when cooled
Using the Michaelis-Menten equation competitive inhibition, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
<h3>What is the Ki for the inhibitor?</h3>
The Ki of an inhibitor is known as the inhibition constant.
The inhibition is a competitive inhibition as the Vmax is unchanged but Km changes.
Using the Michaelis-Menten equation for inhibition:
Making Ki subject of the formula:
where:
- Kma is the apparent Km due to inhibitor
- Km is the Km of the enzyme-catalyzed reaction
- [I] is the concentration of the inhibitor
Solving for Ki:
where
[I] = 26.7 μM
Km = 1.0
Kma = (150% × 1 ) + 1 = 2.5
Ki = 26.7 μM/{(2.5/1) - 1)
Ki = 53.4 μM
Therefore, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
Learn more about enzyme inhibition at: brainly.com/question/13618533
Answer:
add me!!!
Explanation:
my insta is: becomewhatyouwant2inlife
Answer:
2 AgNO3 + Na2SO4 → Ag2SO4 + 2 NaNO3
Explanation:
The general schemefor a reaction is given as;
Reactants --> Products
In this question, the reactants are AgNO3 and Na2SO4. The product is Ag2SO4.
The equation is given as;
AgNO3 + Na2SO4 --> Ag2SO4
The other poduct formed in this reaction is NaNO3.
The full reaction is given as;
AgNO3 + Na2SO4 --> Ag2SO4 + NaNO3
The above reaction is not balanced because there are unequal number of atoms of the elements on both sides of the reaction.
The balanced equation is given as;
2 AgNO3 + Na2SO4 → Ag2SO4 + 2 NaNO3
In this equation, there are equal number of moles of the atoms on both sides.
Ice caps so it would be D
Hope it helps :-)