Answer:0.45L
Explanation:
molarity=0.15M
Mass=5g
No of moles=mass ➗ molecular mass
Molecular mass of KCL=39.0983x1+35.453x1
Molecular mass of KCL=74.5513
No of moles=5 ➗ 74.5513
No of moles=0.067
Volume in liters=No of moles ➗ molarity
Volume in liters=0.067 ➗ 0.15
Volume in liters=0.45L
Answer:
we know that gas molecules move fast by hitting the container and they never meet,so if we have one single gas molecule then it will move slower . This is because it is alone in an empty container so until it hits the container to change it's movements it will make the process slower.
Read the explanation below to have a better idea based on the kinetic molecular theory.
Explanation:
Hello in this question we have a container and in it is a single gas molecule. So there is our gas molecule and in fact right there that violates the kinetic molecular theory. Because the kinetic molecular theory thinks of these particles as being dimension less points. Because there is so much space between particles. The particles themselves have such an insignificant volume as they can be thought of as dimension lys points. Okay. But anyway this particle is in rapid motion and this motion is essentially random. So it's moving and it will eventually hit the wall of its container. It's moving rapidly so it's going to hit it pretty quickly and when it hits the wall of that container Yeah, it is going to bounce off when it does that. It's a totally elastic collision. So that means there will be no energy transfer, no energy loss, no energy gained. It will just serve to change the direction of the particle. So when it hits the wall it's going to bounce back off the wall and continue in a straight line until it hits another wall and then it will bounce off that wall and it will continue moving in this motion in this motion its speed is related to the amount of energy it has and therefore its temperature. So if we add heat, it will move faster. If we remove heat or cool it down, it will move slower. So when we remove heat, it will move slower. The kinetic molecular theory says it will be constantly moving As long as it is above absolute zero. It's only at absolute zero or 0 Kelvin, where would stop moving. Okay, so all these things describe its motion. It's in rapid random motion in a straight line until it hits the wall of its container. Then it will rebound without a transfer of any energy. It will be totally elastic collision. If we were to heat it up, it would move faster. If we were to cool it down, it would move more slowly, we would have to cool it all the way down to absolute zero before it would stop moving. Right, so all of these things describe its motion. In terms of that kinetic molecular theory,
Answer:
Base on the properties the substances possess the substance change phase from gas to liquid.
Explanation:
Generally, matter can exist in three phase namely liquid , solid and gas. The scientist has a container with a substance inside.
At first the substance moves away from each other . This means the substance was first in the gas phase . Gas molecules, because of the energy they possess , it can move rapidly and randomly and most at times move away from each other . The gas molecules tends to fill the whole volume of the container and the shape of gases are indefinite.
Later the molecules move around each other. This is a property of a liquid . A substance in liquid phase have the ability to move freely but they stay together because of the force of attraction holding them together . The substance only have the ability to move around each other because the forces holding them together won't allow them to move apart.
Base on the properties the substances possess the substance change phase from gas to liquid.
Answer:
M = 35 g/mol
Explanation:
Given data:
Density = 2.5 g/L
Pressure = 1.8 atm
Temperature = 30°C (273.15 +30 = 303.15 K)
Molar mass = ?
Solution:
d = PM/RT
M = dRT/P
M = 2.5 g/L × 0.0821 atm.L/mol.K × 303.15 K / 1.8 atm
M = 62.22 atm. g/mol/ 1.8 atm
M = 35 g/mol