Answer:
The molecular formula is C12H18O3
Explanation:
Step 1: Data given
The empirical formula is C4H6O
Molecular weight is 212 g/mol
atomic mass of C = 12 g/mol
atomic mass of H = 1 g/mol
atomic mass of O = 16 g/mol
Step 2: Calculate the molar mass of the empirical formula
Molar mass = 4* 12 + 6*1 +16
Molar mass = 70 g/mol
Step 3: Calculate the molecular formula
We have to multiply the empirical formula by n
n = the molecular weight of the empirical formula / the molecular weight of the molecular formula
n = 70 /212 ≈ 3
We have to multiply the empirical formula by 3
3*(C4H6O- = C12H18O3
The molecular formula is C12H18O3
Silicon has 14 protons Potassium has 19 electrons The neutrons are equal to the mass number minus the atomic number. Or the big number minus the small number on the periodic table. hydrogen 1 does not have a neutron.
iron =56 -26 for 30 neutrons in the nucleus
Chlorine 17 protons and 17 electrons. 18 or 19 neutrons on average.
The compound that will have a sweet smell would be the one, whereby the molecular formula closely resembles that of an ether
R-O-R.
I believe the third one
Answer:
2OH^-(aq) + Cu^2+(aq) -----> Cu(OH)2(s)
Explanation:
The net ionic equation usually shows the main ionic reaction that goes in the system. The other ions that do not participate in this net ionic equation are called spectator ions. Spectator ions do not participate in the main reaction occurring in the system.
The net ionic equation quite often result in the formation of a solid precipitate in the system such as Cu(OH)2.
The net ionic equation for this reaction is;
2OH^-(aq) + Cu^2+(aq) -----> Cu(OH)2(s)
We know that
pH = -log[H+]
the pH value falls in between 0- 7 for acids
As the pH value increases the concentration of [H+] increases.
similarly as the value of pH approaches 0, the concentration of H+ increases
The solution said to become more acidic
Also
[H+] X [OH-] = 10^-14
Thus pH + pOH = 14
hence the concentration of OH- decreases as the pH approaches zero