Answer:
Potassium iodide increases the decomposition rate of hydrogen peroxide.
Explanation:
Potassium iodide increases the decomposition rate of hydrogen peroxide because potassium iodide act as a catalyst. A catalyst speed up the process of chemical reaction without reacting with the molecules present in reaction. If the potassium iodide is not present as a catalyst for the decomposition of hydrogen peroxide then the decomposition of hydrogen peroxide takes too much time because the catalyst is absent that speed up the reaction.
Answer:
THE PARTIAL PRESSURE OF OXYGEN GAS IN THE CONTAINER IS 92.67kPa WHICH IS OPTION B.
Explanation:
To calculate the partial pressure of oxygen gas collected over water, we use
Ptotal = Poxygen + P water
It is worthy to note that when oxygen is collected over water, it is mixed with water vapor and the total pressure in the container will be the sum of the pressure exerted by the oxygen gas and that of the water vapor at that given temperature.
At 20 C, the vapor pressure of water as given in the question is 2.33 kPa.
Using the above formula,
Ptotal = Poxygen + P water
Substituting for Poxygen, we have;
Poxygen = Ptotal - P water vapor
P oxygen = 95 .00 kPa - 2.33 kPa
P oxygen = 92.67 kPa.
The partial pressure of oxygen gas in the container is hence, 92.67kPa.
Well a molecule of water is equal to 1 Oxygen and 2 Hydrogen each, so it'd be 2 molecules of water
There are 20.8 moles of propanol
<h3>Further explanation </h3>
The mole is the number of particles(molecules, atoms, ions) contained in a substance
1 mol = 6.02.10²³ particles
Can be formulated
N=n x No
N = number of particles
n = mol
No = Avogadro's = 6.02.10²³
1.2 x 10⁵ molecules of propanol

Your answer is H) florine