Answer:
(2,-7)
Step-by-step explanation:
Plug in the numbers to test and see if it gives you -17 and -8.
Option 1. 2(-4)+3(2)
= -8+6 = -2. Not it.
Option 2. 2(2)+3(-7)
4 - 21 = -17 Works. Try the second equation to make sure.
3(2)+2(-7)
6-14 = -8. Works.
(2,-7) is the answer.
Step-by-step explanation:
3x+18+2x-5= -2x+-2+10
combining like terms
3x+2x+2x=5-2+10-18
7x=-5
x=-5/7
Answer:
32 are in California and 8 are in Nevada.
Step-by-step explanation:
You multiply 40 by 0.80. You then get 32. That's your answer.
Answer:
the amswer is 5 hope this helps you
Answer:
![E(X)= n \int_{0}^1 x^n dx = n [\frac{1}{n+1}- \frac{0}{n+1}]=\frac{n}{n+1}](https://tex.z-dn.net/?f=E%28X%29%3D%20n%20%5Cint_%7B0%7D%5E1%20x%5En%20dx%20%3D%20n%20%5B%5Cfrac%7B1%7D%7Bn%2B1%7D-%20%5Cfrac%7B0%7D%7Bn%2B1%7D%5D%3D%5Cfrac%7Bn%7D%7Bn%2B1%7D)
Step-by-step explanation:
A uniform distribution, "sometimes also known as a rectangular distribution, is a distribution that has constant probability".
We need to take in count that our random variable just take values between 0 and 1 since is uniform distribution (0,1). The maximum of the finite set of elements in (0,1) needs to be present in (0,1).
If we select a value
we want this:

And we can express this like that:
for each possible i
We assume that the random variable
are independent and
from the definition of an uniform random variable between 0 and 1. So we can find the cumulative distribution like this:

And then cumulative distribution would be expressed like this:



For each value
we can find the dendity function like this:

So then we have the pdf defined, and given by:
and 0 for other case
And now we can find the expected value for the random variable X like this:

![E(X)= n \int_{0}^1 x^n dx = n [\frac{1}{n+1}- \frac{0}{n+1}]=\frac{n}{n+1}](https://tex.z-dn.net/?f=E%28X%29%3D%20n%20%5Cint_%7B0%7D%5E1%20x%5En%20dx%20%3D%20n%20%5B%5Cfrac%7B1%7D%7Bn%2B1%7D-%20%5Cfrac%7B0%7D%7Bn%2B1%7D%5D%3D%5Cfrac%7Bn%7D%7Bn%2B1%7D)