Explanation:
I think B a chemical change
Answer:
This question is incomplete
Explanation:
This question is incomplete, however, the element that has 52 electrons only is Tellurium (Te) and when the electronic configuration of elements with more than 52 electrons are written, the 52nd electron is indicated/paired the same way the 52nd electron of Te is indicated/paired. Hence, while writing the electronic configuration of Te, it is written as
[Kr] 4d¹⁰ 5s² 5p⁴ where [Kr] is the electronic configuration of krypton. Based on this, we can deduce that the 52nd electron will be in the first orbital of the P subshell (as attached in the picture). This is because when indicating the electrons in the subshell, one electron will be spread across each orbital and if any electron is still remaining, it will be added starting from to the first orbital of the subshell, however no two electrons in an orbital in a subshell can have the same spin and hence must face opposite direction based on pauli's exclusion principle (as seen in attached); thus for the 5p-orbital of elements with 52 or more electrons, when one electron each is represented in each box (3 boxes in total) in the 5p-orbital, the remaining electron is paired with the the first electron in the first box of the 5p-orbital
Abbreviation. DNA, which stands for deoxyribonucleic acid, is defined as a nucleic acid that contains the genetic code.
Answer:
Have the same number of electrons in their outer energy levels
Explanation:
Elements in the same group have similar chemical properties because they have the same number of valence electron(s) in their outermost shell.
Chlorine and Iodine have similar chemical properties because they have the same number of valence electron in their outermost shell. This can be seen from their electronic configuration as shown below:
Cl (17) => 1s² 2s²2p⁶ 3s²3p⁵
I (53) => [Kr] 4d¹⁰ 5s²5p⁵
From the above illustration:
Outer shell of Cl (3s²3p⁵) = 2 + 5 = 7 electrons
Outer shell of I (5s²5p⁵) = 2 + 5 = 7 electrons
Since they have the same number of valence electrons, therefore, they will have similar chemical properties.