Answer:
The one that's highlighted in blue is the answer
Answer:
We'll have 13.85 grams of potassium
Explanation:
Step 1: Data given
Moles KBr = 0.46 mol
Molar mass KBr = 119.00 g/mol
Molar mass K = 30.10 g/mol
Step 2: The balanced equation
2KBr ⇆ 2K + Br2
Step 3: Calculate moles of K
For 2 moles KBr consumed we'll have 2 moles K and 1 mol Br2
For 0.46 moles KBr we'll have 0.46 moles K
Step 4: Calculate mass of K
Mass K = moles K * molar mass K
Mass K = 0.46 moles * 30.10 g/mol
Mass K = 13.85 grams
We'll have 13.85 grams of potassium
C. Their components can be separated by physical processes.
In order to balance this equation you need to count each element and how many of the individual elements are in the equation. _H2+N2=2 NH3 You multiply the 2 (Which is the coefficient) by the 3 (which is the subscript) This would equal 6 which indicated there are 6 hydrogen atoms on the right side so the left side should also have 6 hydrogen atoms
The missing coefficient on the left side must multiple the 2 to become 6 hydrogen Answer=3