Explanation:
Dehydrohalogenation reactions occurs as elimination reactions through the following mechanism:
Step 1: A strong base(usually KOH) removes a slightly acidic hydrogen proton from the alkyl halide.
Step 2: The electrons from the broken hydrogen‐carbon bond are attracted toward the slightly positive carbon (carbocation) atom attached to the chlorine atom. As these electrons approach the second carbon, the halogen atom breaks free.
However, elimination will be slower in the exit of Hydrogen atom at the C2 and C3 because of the steric hindrance by the methyl group.
Elimination of the hydrogen from the methyl group is easier.
Thus, the major product will A
It is the independent variable because you can ‘manipulate’ or ‘change’ it.
Answer: The pH of 0.10 M
is 4.49.
Explanation:
Given: Initial concentration of
= 0.10 M

Let us assume that amount of
dissociates is x. So, ICE table for dissociation of
is as follows.
![Cu(H_{2}O)^{2+}_{6} \rightleftharpoons [Cu(H_{2}O)_{5}(OH)]^{+} + H_{3}O^{+}](https://tex.z-dn.net/?f=Cu%28H_%7B2%7DO%29%5E%7B2%2B%7D_%7B6%7D%20%5Crightleftharpoons%20%5BCu%28H_%7B2%7DO%29_%7B5%7D%28OH%29%5D%5E%7B%2B%7D%20%2B%20H_%7B3%7DO%5E%7B%2B%7D)
Initial: 0.10 M 0 0
Change: -x +x +x
Equilibrium: (0.10 - x) M x x
As the value of
is very small. So, it is assumed that the compound will dissociate very less. Hence, x << 0.10 M.
And, (0.10 - x) will be approximately equal to 0.10 M.
The expression for
value is as follows.
![K_{a} = \frac{[Cu(H_{2}O)^{2+}_{6}][H_{3}O^{+}]}{[Cu(H_{2}O)^{2+}_{6}]}\\1.0 \times 10^{-8} = \frac{x \times x}{0.10}\\x = 3.2 \times 10^{-5}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BCu%28H_%7B2%7DO%29%5E%7B2%2B%7D_%7B6%7D%5D%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BCu%28H_%7B2%7DO%29%5E%7B2%2B%7D_%7B6%7D%5D%7D%5C%5C1.0%20%5Ctimes%2010%5E%7B-8%7D%20%3D%20%5Cfrac%7Bx%20%5Ctimes%20x%7D%7B0.10%7D%5C%5Cx%20%3D%203.2%20%5Ctimes%2010%5E%7B-5%7D)
Hence, ![[H_{3}O^{+}] = 3.2 \times 10^{-5}](https://tex.z-dn.net/?f=%5BH_%7B3%7DO%5E%7B%2B%7D%5D%20%3D%203.2%20%5Ctimes%2010%5E%7B-5%7D)
Formula to calculate pH is as follows.
![pH = -log [H^{+}]](https://tex.z-dn.net/?f=pH%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D)
Substitute the values into above formula as follows.
![pH = -log [H^{+}]\\= - log (3.2 \times 10^{-5})\\= 4.49](https://tex.z-dn.net/?f=pH%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D%5C%5C%3D%20-%20log%20%283.2%20%5Ctimes%2010%5E%7B-5%7D%29%5C%5C%3D%204.49)
Thus, we can conclude that the pH of 0.10 M
is 4.49.
The image is attached with the answer.
<h3>
What are Isomers ?</h3>
Isomers are compounds which have same empirical formula , same number of atoms are present but they have difference in arrangement if the atoms.
It is given that
There are four cis, trans isomers for 2-isopropyl-5-methylcyclohexanol
the cis, trans designations of the substituents are made relative to the oh group
The image is attached with this answer.
To know more about Isomers
brainly.com/question/13422357
#SPJ1
Answer:
54.75 mL
Explanation:
First calculate the number of moles of NaCl in the 150mL solution of NaCl
0.0365 moles should be present on 1000cm3 or 1dm3 of water.
1L = 1 dm3
1 mL = 1 / 1000 dm3
150 mL = 150/1000 dm3 = 0.15 dm3
If x moles are present in 0.15 dm3,
x/ 0.15 = 0.0365
We get x= 0.0365 × 0.15 mol
Now x amount of moles should be taken from the initial 0.100 M NaCl solution
So 0.1 moldm-3 = 0.0365× 0.15 mol / V
we get V = 0.05475 dm3
V= 0.05475 L
V= 54.75 mL