Answer:
pent-3-ene-1-yne
Explanation:
1 2 3 4 5
CH ≡ C - CH = CH - CH3
IUPAC name : Pent-3-ene-1-yne
Answer:
4m/s in the direction of the turn
Explanation:
The velocity of an object is the rate of change of its position with respect to a frame of reference.
Assuming the runner stays the same speed as he turns, his velocity will be 4m/s in the speed he turns.
A homogeneous mixture has the same uniform appearance and composition throughout.
A heterogeneous mixture consists of visibly different substances or phases. The three phases or states of matter are gas, liquid, and solid.
A homogeneous mixture has the same uniform appearance and composition throughout. Many homogeneous mixtures are commonly referred to as solutions. A heterogeneous mixture consists of visibly different substances or phases.
Answer:
66228
Molecular Formula: TiCl2 or Cl2Ti
Chemical Names: Titanium chloride (TiCl2) 10049-06-6 TiCl2 Titanium(II) chloride dichlorotitanium More...
Molecular Weight: 118.77 g/mol
Dates: Modify: 2019-08-10 Create: 2005-03-26
Explanation:
66228
Molecular Formula: TiCl2 or Cl2Ti
Chemical Names: Titanium chloride (TiCl2) 10049-06-6 TiCl2 Titanium(II) chloride dichlorotitanium More...
Molecular Weight: 118.77 g/mol
Dates: Modify: 2019-08-10 Create: 2005-03-26
Answer:
0.88 g
Explanation:
Using ideal gas equation to calculate the moles of chlorine gas produced as:-

where,
P = pressure of the gas = 805 Torr
V = Volume of the gas = 235 mL = 0.235 L
T = Temperature of the gas = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
R = Gas constant = 
n = number of moles of chlorine gas = ?
Putting values in above equation, we get:

According to the reaction:-

1 mole of chlorine gas is produced when 1 mole of manganese dioxide undergoes reaction.
So,
0.01017 mole of chlorine gas is produced when 0.01017 mole of manganese dioxide undergoes reaction.
Moles of
= 0.01017 moles
Molar mass of
= 86.93685 g/mol
So,

Applying values, we get that:-

<u>0.88 g of
should be added to excess HCl (aq) to obtain 235 mL of
at 25 degrees C and 805 Torr.</u>