the greatest amount of work is required if the process is adiabatic.The correct option is adiabatic.
The process in which heat is constant is called adiabatic process.
The The process in which temperature is constant is called isothermal process.
The process in which pressure is constant is called isobaric process.
The P-V diagram for adiabatic , isothermal and isobaric process is given below.
Work done in process = area encloses by P-V diagram axis . Since area under the curve is maximum for adiabatic process which is shown in the above diagram. So, work done by the gas will be maximum for adiabatic process.
learn more about adiabatic process.
brainly.com/question/17192213
#SPJ4
Answer : The volume of 3.0 M spinach solution added should be, 50 mL
Explanation :
Formula used :

where,
are the initial molarity and volume of spinach solution.
are the final molarity and volume of diluted spinach solution.
We are given:

Now put all the given values in above equation, we get:

Hence, the volume of 3.0 M spinach solution added should be, 50 mL
Answer:
a) No molecules of hydrogen
b) four molecules of ammonia
c) four left molecules of nitrogen.
Explanation:
The balanced reaction between nitrogen and hydrogen molecules to give ammonia molecules is:

Thus one molecule of nitrogen will react with three molecules of hydrogen to give two molecules of ammonia.
We have six molecules of each nitrogen and hydrogen in the closed container and they undergo complete reaction it means the limiting reagent is hydrogen. For six molecules of nitrogen, eighteen molecules of hydrogen will be required.
So six molecules of hydrogen will react with two molecules of nitrogen to give four molecules of ammonia.
The product mixture will have
a) No molecules of hydrogen
b) four molecules of ammonia
c) four left molecules of nitrogen.
Answer:
Explanation:
The fuel is burning completely
Answer:
0.17 moles
Explanation:
In the elements of the periodic table, the atomic mass = molar mass. <u>Ex:</u> Atomic mass of Carbon is 12.01 amu which means molar mass of Carbon is also 12.01g/mol.
In order to find the # of moles in a 12 g sample of NiC-12, we will need to multiply the number of each atom by its molar mass and then add the masses of both Nickel and C-12 found in the periodic table:
- Molar Mass of Ni (Nickel): 58.69 g/mol
- Molar Mass of C (Carbon): 12.01 g/mol
Since there's just one atom of both Carbon and Nickel, we just add up the masses to find the molar mass of the whole compound of NiC-12.
- 58.69 g/mol of Nickel + 12.01 g/mol of Carbon = 70.7 g/mol of NiC-12
There's 12g of NiC-12, which is less than the molar mass of NiC-12, so the number of moles should be less than 1. In order to find the # of moles in NiC-12, we need to do some dimensional analysis:
- 12g NiC-12 (1 mol of NiC-12/70.7g NiC-12) = 0.17 mol of NiC-12
- The grams cancel, leaving us with moles of NiC-12, so the answer is 0.17 moles of NiC-12 in a 12 g sample.
<em>P.S. C-12 or C12 just means that the Carbon atom has an atomic mass of 12amu and a molar mass of 12g/mol, or just regular carbon.</em>