Answer:
-7/9
Step-by-step explanation:
here you go I hope it helps
I assume you mean one that is not rational, such as √2. In such a case, you make a reasonable estimate of it's position, and then label the point that you plot.
For example, you know that √2 is greater than 1 and less than 2, so put the point at about 1½ (actual value is about 1.4142).
For √3, you know the answer is still less than 4, but greater than √2. If both of those points are required to be plotted just make sure you put it in proper relation, otherwise about 1¾ is plenty good (actual value is about 1.7321).
If you are going to get into larger numbers, it's not a bad idea to just learn a few roots. Certainly 2, 3, and 5 (2.2361) and 10 (3.1623) shouldn't be too hard.
Then for a number like 20, which you can quickly workout is √4•√5 or 2√5, you could easily guess about 4½ (4.4721).
They're usually not really interested in your graphing skills on this sort of exercise. They just want you to demonstrate that you have a grasp of the magnitude of irrational numbers.
Answer:
{
}
{
}
The relation is not a function.
Step-by-step explanation:
By definition, a relation is a function if each input value has only one output value.
Given the relation:
(4,23)
(3,-2)
(-6,5)
(4,6)
The domain is the set of the x-coordinates of each ordered pair (You do not need to write 4 twice):
{
}
The range is the set of the y-coordinates of each ordered pair :
{
}
Since the input value 4 has two different output values (23 and 6), the relation is not a function.
Lets round it to the nearest ten
A 97 ====> 100
B 118 ===> 120
C 179 ===> 180
D 5091 ==> 5090
No result yet, lets round to the nearest hindred.
A 97 ====> 100
B 118 ===> 100
C 179 ===> 180
D 5091 ==> 5100
As we can see only A give the same result when we round it to the nearest hundred and nearest ten.
1.)
-x=3-4x+6
3x=3+6
3x=9
X=3
c
2.)
-6+x=-2
x=4
B