1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timama [110]
3 years ago
14

Astrology, a belief in a relationship between constellations of stars and life events,

Chemistry
1 answer:
yanalaym [24]3 years ago
3 0

Answer:

Pseudoscience

Explanation:

"Astrology has not demonstrated its effectiveness in controlled studies and has no scientific validity, thus regarded as pseudoscience."

You might be interested in
Find the amount of heat energy needed to convert 400 grams of ice at -38°C to steam at 160°C.
Marianna [84]

The amount of heat energy needed to convert 400 g of ice at -38 °C to steam at 160 °C is 1.28×10⁶ J (Option D)

<h3>How to determine the heat required change the temperature from –38 °C to 0 °C </h3>
  • Mass (M) = 400 g = 400 / 1000 = 0.4 Kg
  • Initial temperature (T₁) = –25 °C
  • Final temperature (T₂) = 0 °
  • Change in temperature (ΔT) = 0 – (–38) = 38 °C
  • Specific heat capacity (C) = 2050 J/(kg·°C)
  • Heat (Q₁) =?

Q = MCΔT

Q₁ = 0.4 × 2050 × 38

Q₁ = 31160 J

<h3>How to determine the heat required to melt the ice at 0 °C</h3>
  • Mass (m) = 0.4 Kg
  • Latent heat of fusion (L) = 334 KJ/Kg = 334 × 1000 = 334000 J/Kg
  • Heat (Q₂) =?

Q = mL

Q₂ = 0.4 × 334000

Q₂ = 133600 J

<h3>How to determine the heat required to change the temperature from 0 °C to 100 °C </h3>
  • Mass (M) = 0.4 Kg
  • Initial temperature (T₁) = 0 °C
  • Final temperature (T₂) = 100 °C
  • Change in temperature (ΔT) = 100 – 0 = 100 °C
  • Specific heat capacity (C) = 4180 J/(kg·°C)
  • Heat (Q₃) =?

Q = MCΔT

Q₃ = 0.4 × 4180 × 100

Q₃ = 167200 J

<h3>How to determine the heat required to vaporize the water at 100 °C</h3>
  • Mass (m) = 0.4 Kg
  • Latent heat of vaporisation (Hv) = 2260 KJ/Kg = 2260 × 1000 = 2260000 J/Kg
  • Heat (Q₄) =?

Q = mHv

Q₄ = 0.4 × 2260000

Q₄ = 904000 J

<h3>How to determine the heat required to change the temperature from 100 °C to 160 °C </h3>
  • Mass (M) = 0.4 Kg
  • Initial temperature (T₁) = 100 °C
  • Final temperature (T₂) = 160 °C
  • Change in temperature (ΔT) = 160 – 100 = 60 °C
  • Specific heat capacity (C) = 1996 J/(kg·°C)
  • Heat (Q₅) =?

Q = MCΔT

Q₅ = 0.4 × 1996 × 60

Q₅ = 47904 J

<h3>How to determine the heat required to change the temperature from –38 °C to 160 °C</h3>
  • Heat for –38 °C to 0°C (Q₁) = 31160 J
  • Heat for melting (Q₂) = 133600 J
  • Heat for 0 °C to 100 °C (Q₃) = 167200 J
  • Heat for vaporization (Q₄) = 904000 J
  • Heat for 100 °C to 160 °C (Q₅) = 47904 J
  • Heat for –38 °C to 160 °C (Qₜ) =?

Qₜ = Q₁ + Q₂ + Q₃ + Q₄ + Q₅

Qₜ = 31160 + 133600 + 167200 + 904000 + 47904

Qₜ = 1.28×10⁶ J

Learn more about heat transfer:

brainly.com/question/10286596

#SPJ1

7 0
2 years ago
Engineers are starting on a new project to develop technology. Which of these
KATRIN_1 [288]

Answer:

D.

Explanation:

Deciding whether the best product has been designed,should be the last step.

3 0
3 years ago
n unknown metal is either aluminum, iron or lead. If 150. g of this metal at 150.0 °C was placed in a calorimeter that contains
Nitella [24]

Answer : The metal used was iron (the specific heat capacity is 0.449J/g^oC).

Explanation :

In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.

q_1=-q_2

m_1\times c_1\times (T_f-T_1)=-m_2\times c_2\times (T_f-T_2)

where,

c_1 = specific heat of unknown metal = ?

c_2 = specific heat of water = 4.184J/g^oC

m_1 = mass of unknown metal = 150 g

m_2 = mass of water = 200 g

T_f = final temperature of water = 34.3^oC

T_1 = initial temperature of unknown metal = 150.0^oC

T_2 = initial temperature of water = 25.0^oC

Now put all the given values in the above formula, we get

150g\times c_1\times (34.3-150.0)^oC=-200g\times 4.184J/g^oC\times (34.3-25.0)^oC

c_1=0.449J/g^oC

Form the value of specific heat of unknown metal, we conclude that the metal used in this was iron (Fe).

Therefore, the metal used was iron (the specific heat capacity is 0.449J/g^oC).

6 0
4 years ago
7) A block of wood
melamori03 [73]

Answer:

Explanation:

7) A block of wood

has a length of 10.2

cm, a width of 6 cm

and a height of 4.1

cm. The wood has

a total mass of 179

grams. What is the

volume of the

wood and what is

the density of the

wood?

volume = L XW XH=10.2 X 6 X4.1 =250.92cm^3

DENSITY = M/V = 179gm/250.92 cm^3

=0.713 gm/cm^3

5 0
3 years ago
2 characteristics and 2 differences for spiral and elliptical galaxies
Lerok [7]
Spiral galaxies have three main components: a bulge, disk, and halo (see right). The bulge is a spherical structure found in the center of the galaxy. This feature mostly contains older stars. The disk is made up of dust, gas, and younger stars. The disk forms arm structures. Our Sun is located in an arm of our galaxy, the Milky Way. The halo of a galaxy is a loose, spherical structure located around the bulge and some of the disk. The halo contains old clusters of stars, known as globular clusters<span>.
</span><span>
Elliptical galaxies are shaped like a spheriod, or elongated sphere. In the sky, where we can only see two of their three dimensions, these galaxies look like elliptical, or oval, shaped disks. The light is smooth, with the surface brightness decreasing as you go farther out from the center. Elliptical galaxies are given a classification that corresponds to their elongation from a perfect circle, otherwise known as their ellipticity. The larger the number, the more elliptical the galaxy is. So, for example a galaxy of classification of E0 appears to be perfectly circular, while a classification of E7 is very flattened. The elliptical scale varies from E0 to E7. Elliptical galaxies have no particular axis of rotation.

</span>
5 0
3 years ago
Read 2 more answers
Other questions:
  • How is milk souring a chemical change?
    12·1 answer
  • Average atomic mass work
    13·1 answer
  • The use of high-pressure chambers to control disease processes is known as
    11·1 answer
  • What are the different mode of heat transfer?
    5·1 answer
  • Will bromine water and magnesium react
    11·1 answer
  • Choose the coefficient for blank 1 (in front of Rb)
    12·1 answer
  • Which of the following is NOT a compound?<br> Table salt<br> Carbon dioxide<br> Water<br> Gold
    6·2 answers
  • `In this lesson we discussed how to abbreviate electron configurations using what is called noble gas configuration. So if you w
    7·1 answer
  • An irreversible change would be?
    5·1 answer
  • Photosynthesis is the reaction by which green plants convert water and carbon dioxide into glucose and oxygen using sunlight (ra
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!