From 5 L to moles, just divide 5 by 22.4. I got 0.22 moles of H2.
From 5 moles to liters, just multiply 5 by 22.4. I got 112 L of H2.
Answer:
H2
Explanation:
Critical temperature is the temperature above which gas cannot be liquefied, regardless of the pressure applied.
Critical temperature directly depends on the force of attraction between atoms, it means stronger the force of higher will be the critical temperature. So, from the given options H2 should have the highest critical temperature because of high attractive forces due to H bonding.
Hence, the correct option is H2.
A rock is a solid, so Logan can't poke his finger through it.
Answer:
87.27 grams
Explanation:
The mole ratio of nitrogen to hydrogen is 1:3; while that one of hydrogen to the products (ammonia) is 3:2
Thus if 3 moles of hydrogen gas produce 2 moles of ammonia gas
7.7 moles of hydrogen will produce:
(7.7moles×2)/3
77/15 moles
1 mole of ammonia gas has a mass of 14+3=17
since the mass of an atom of nitrogen is 14 while that of hydrogen atom is 1.
Therefore 77/15 moles will have a mass of
77/15 moles × 17=87.27 grams
Answer:
A is the correct answer.
Explanation:
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example if neutral atom has 6 protons than it must have 6 electrons. The sum of neutrons and protons is the mass number of an atom while the number of protons are number of electrons is the atomic number of an atom.
For example in case of Helium:
The 1st one diagram shows that arrow is pointing with in nucleus. The helium nucleus contain two protons and two neutrons. Thus maximum mass is present with in nucleus. while two electrons are revolve around the nucleus and mass of electron is negligible.