Answer:
7.57 *10^1 g
Explanation:
10.9 mol Li *6.941 g/1 mol = 75.6569 > 7.57 *10^1 g
Answer:
(a) Ionic
(b) Nonpolar covalent
(c) Polar covalent
(d) Polar covalent
(e) Nonpolar covalent
(f) Polar covalent
<em>For those substances with polar covalent bonds, which has the least polar bond?</em> NO₂
<em>For those substances with polar covalent bonds, which has the most polar bond?</em> BF₃
Explanation:
<em>Are the bonds in each of the following substances ionic, nonpolar covalent, or polar covalent?</em>
The nature of a bond depends on the modulus of the difference of electronegativity (|ΔEN|) between the atoms that form it.
- If |ΔEN| = 0, the bond is nonpolar covalent.
- If 0 < |ΔEN| ≤ 2, the bond is polar covalent.
- If |ΔEN| > 2, the bond is ionic.
<em>(a) KCl</em> |ΔEN| = |EN(K) - EN(Cl)| = |0.8 - 3.0| = 2.2. The bond is ionic.
<em>(b) P₄</em> |ΔEN| = |EN(P) - EN(P)| = |2.1 - 2.1| = 0.0. The bond is nonpolar covalent.
<em>(c) BF₃</em> |ΔEN| = |EN(B) - EN(F)| = |2.0 - 4.0| = 2.0. The bond is polar covalent.
<em>(d) SO₂</em> |ΔEN| = |EN(S) - EN(O)| = |2.5 - 3.5| = 1.0. The bond is polar covalent.
<em>(e) Br₂</em> |ΔEN| = |EN(Br) - EN(Br)| = |2.8 - 2.8| = 0.0. The bond is nonpolar covalent.
<em>(f) NO₂</em> |ΔEN| = |EN(N) - EN(O)| = |3.0 - 3.5| = 0.5. The bond is polar covalent.
Answer: It is C I just did this question in math class
Explanation:
The answer is Non-renewable
Answer:
From 4.0 moles of hydrogen 2.67 moles of ammonia are produced.
Explanation:
Given data:
Number of moles of hydrogen react = 4.0 mol
Number of moles of ammonia produced = ?
Solution:
Chemical equation:
N₂ + 3H₂ → 2NH₃
Now we will compare the moles of hydrogen and ammonia from balance chemical equation.
H₂ : NH₃
3 : 2
4 : 2/3×4 = 2.67 mol
From 4.0 moles of hydrogen 2.67 moles of ammonia are produced.