Answer:
omigosh hope she gets better i will look at the pdf and solve
Step-by-step explanation:
okay so for most of them you can just multiply by the denominator to turn it into a regular number (to get it out of fraction form) and then use basic algebra to solve for x. I 'll write the answers to problems 1-9 in the comments
Vertex form is basically commplete the square
y=a(x-h)^2+k
y=x^2+14x+4
take 1/2 of 14 and square it, (7^2=49)
add that and its negative to right side
y=x^2+14x+49-49+4
factor perfect squaer
y=(x+7)^2-49+4
y=(x+7)^2-45
answer is A
This problem can be readily solved if we are familiar with the point-slope form of straight lines:
y-y0=m(x-x0) ...................................(1)
where
m=slope of line
(x0,y0) is a point through which the line passes.
We know that the line passes through A(3,-6), B(1,2)
All options have a slope of -4, so that should not be a problem. In fact, if we check the slope=(yb-ya)/(xb-xa), we do find that the slope m=-4.
So we can check which line passes through which point:
a. y+6=-4(x-3)
Rearrange to the form of equation (1) above,
y-(-6)=-4(x-3) means that line passes through A(3,-6) => ok
b. y-1=-4(x-2) means line passes through (2,1), which is neither A nor B
****** this equation is not the line passing through A & B *****
c. y=-4x+6 subtract 2 from both sides (to make the y-coordinate 2)
y-2 = -4x+4, rearrange
y-2 = -4(x-1)
which means that it passes through B(1,2), so ok
d. y-2=-4(x-1)
this is the same as the previous equation, so it passes through B(1,2),
this equation is ok.
Answer: the equation y-1=-4(x-2) does NOT pass through both A and B.
A sword is Saskatchewan. Mdkdodn idioms has nsito day you can come to sleep early tomorrow and you yo me
16x^2 + 25y^2 + 160x - 200y + 400 = 0 Rearrange and regroup.
(16x^2 + 160x) + (25y^2 - 200y ) = 0-400. Group the xs together and the ys together.
16(X^2 + 10x) + 25(y^2-8y) = -400. Factorising.
We are going to use completing the square method.
Coefficient of x in the first expression = 10.
Half of it = 1/2 * 10 = 5. (Note this value)
Square it = 5^2 = 25. (Note this value)
Coefficient of y in the second expression = -8.
Half of it = 1/2 * -8 = -4. (Note this value)
Square it = (-4)^2 = 16. (Note this value)
We are going to carry out a manipulation of completing the square with the values
25 and 16. By adding and substracting it.
16(X^2 + 10x) + 25(y^2-8y) = -400
16(X^2 + 10x + 25 -25) + 25(y^2-8y + 16 -16) = -400
Note that +25 - 25 = 0. +16 -16 = 0. So the equation is not altered.
16(X^2 + 10x + 25) -16(25) + 25(y^2-8y + 16) -25(16) = -400
16(X^2 + 10x + 25) + 25(y^2-8y + 16) = -400 +16(25) + 25(16) Transferring the terms -16(25) and -25(16)
to other side of equation. And 16*25 = 400
16(X^2 + 10x + 25) + 25(y^2-8y + 16) = 25(16)
16(X^2 + 10x + 25) + 25(y^2-8y + 16) = 400
We now complete the square by using the value when coefficient was halved.
16(x-5)^2 + 25(y-4)^2 = 400
Divide both sides of the equation by 400
(16(x-5)^2)/400 + (25(y-4)^2)/400 = 400/400 Note also that, 16*25 = 400.
((x-5)^2)/25 + ((y-4)^2)/16 = 1
((x-5)^2)/(5^2) + ((y-4)^2)/(4^2) = 1
Comparing to the general format of an ellipse.
((x-h)^2)/(a^2) + ((y-k)^2)/(b^2) = 1
Coordinates of the center = (h,k).
Comparing with above (x-5) = (x - h) , h = 5.
Comparing with above (y-k) = (y - k) , k = 4.
Therefore center = (h,k) = (5,4).
Sorry the answer came a little late. Cheers.