The triarchic theory of intelligence<span> was formulated by </span>Robert J. Sternberg<span>, a prominent figure in research of human </span>intelligence<span>. The theory by itself was among the first to go against the </span>psychometric<span> approach to intelligence and take a more </span>cognitive approach<span>. The three meta components are also called triarchic components. These are the triarchic theory of human intelligence.
</span>1.
Analytical - Analytical Intelligence similar to the standard psychometric definition of intelligence e.g. as measured by Academic problem solving: analogies and puzzles, and corresponds to his earlier componential intelligence. Sternberg considers this reflects how an individual relates to his internal world.
Sternberg believes that Analytical Intelligence (Academic problem-solving skills) is based on the joint operations of metacomponents and performance components and knowledge acquisition components of intelligence
2.
Practical - Practical Intelligence: this involves the ability to grasp, understand and deal with everyday tasks. This is the Contextual aspect of intelligence and reflects how the individual relates to the external world about him or her.
<span>Sternberg states that Intelligence is: </span>"Purposive adaptation to, shaping of, and selection of real-world environments relevant to one's life" (Sternberg, 1984, p.271)
3.
Creative - Creative Intelligence: this involves insights, synthesis and the ability to react to novel situations and stimuli. This he considers the Experiential aspect of intelligence and reflects how an individual connects the internal world to external reality.
<span>Sternberg </span>considers the Creative facet to consist of the ability which allows people to think creatively and that which allows people to adjust creatively and effectively to new situations.
<span>Sternberg believes that more intelligent individuals will also move from consciously learning in a novel situation to automating the new learning so that they can attend to other tasks.</span>
Answer:
6.58m
Explanation:
The kinetic energy = Workdone on the roller
Workdone = Force * distance
Given
KE = Workdone = 362J
Force = 55N
Required
Distance
Substitute into the formula;
Workdone = Force * distance
362 = 55d
d = 362/55
d = 6.58m
Hence the student must push at a distance of 6.58m
We can use the equation for kinetic energy, K=1/2mv².
Your given variables are already in the correct units, so we can just plug in the variables and solve for v.
K = 1/2mv²
16 = 1/2(2)v²
16 = (1)v²
√16 = v
v = 4 m/s
Therefore, the velocity of a 2 kg mass with 16 J of kinetic energy is 4 m/s.
Hope this is helpful!
Answer:
d
Explanation:
In physics and engineering, a free body diagram (force diagram, or FBD) is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a body in a given condition.