1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergey [27]
3 years ago
5

(b) How far from the surface will a particle go if it leaves the asteroid's surface with a radial speed of 1510 m/s? (c) With wh

at speed will an object hit the asteroid if it is dropped from 981.8 km above the surface?
Physics
1 answer:
makvit [3.9K]3 years ago
7 0

Answers:

(a) 2509.98 m/s

(b) 397042.215 m

(c) 1917.76 m/s

Explanation:

The question is incomplete, please remember to write the whole question :) However, part (a) is written below:

(a) What is the escape speed on a spherical asteroid whose radius is 700 km  and whose gravitational acceleration at the surface is a_{g}=4.5 m/s^{2}

Knowing this, let's begin:

a) In this part we need to find the escape speed V_{e} on the asteroid:

V_{e}=\sqrt{\frac{2GM}{R}} (1)

Where:

G is the universal gravitational constant

M is the mass of the asteroid

R=700 km=700(10)^{3} m is the radius of the asteroid

On the other hand we know the gravitational acceleration is a_{g}=4.5 m/s^{2}, which is given by:

a_{g}=\frac{GM}{R^{2}} (2)

Isolating GM:

GM=a_{g}R^{2} (3)

Substituting (3) in (1):

V_{e}=\sqrt{\frac{2a_{g}R^{2}}{R}}=\sqrt{2a_{g}R} (4)

V_{e}=\sqrt{2(4.5 m/s^{2})(700(10)^{3} m)} (5)

V_{e}=2509.98 m/s (6) This is the escape velocity

b) In this part we will use the Conservation of mechanical energy principle:

E_{o}=E_{f} (7)

Being:

E_{o}=K_{o}+U_{o}=\frac{1}{2}m V^{2} - \frac{GMm}{R} (8)

E_{f}=K_{f}+U_{f}=0 - \frac{GMm}{R+h} (9)

Where:

E_{o} is the initial mechanical energy

E_{f} is the final mechanical energy

K_{o} is the initial kinetic energy

K_{f}=0 is the final kinetic energy

U_{o} is the initial gravitational potential energy

U_{f} is the final gravitational potential energy

m is the mass of the object

V=1510 m/s is the radial speed of the object

h is the distance above the surface of the object

Then:

\frac{1}{2}m V^{2} - \frac{GMm}{R}=- \frac{GMm}{R+h} (10)

Isolating h:

h=\frac{2 a_{g} R^{2}}{2a_{g}R-V^{2}}-R (11)

h=\frac{2 (4.5 m/s^{2}) (700(10)^{3} m)^{2}}{2(4.5 m/s^{2})(700(10)^{3} m)-(1510 m/s)^{2}}-700(10)^{3} m (11)

h=397042.215 m (12) This is the distance above the asteroid's surface

c) We will use the Conservation of mechanical energy principle again, but now the condition is that the object is dropped at a distance h=981.8 km=981.8(10)^{3} m. This means that at the begining the object only has gravitational potential energy and then it has kinetic energy and gravitational potential energy:

\frac{-GMm}{R+h}=\frac{-GMm}{R}+\frac{1}{2}mV^{2} (13)

Isolating V:

V=\sqrt{2a_{g} R(1-\frac{R}{R+h})} (14)

V=\sqrt{2(4.5 m/s^{2}) (700(10)^{3} m)(1-\frac{700(10)^{3} m}{700(10)^{3} m+981.8(10)^{3} m})} (15)

Finally:

V=1917.76 m/s

You might be interested in
A 392 N wheel comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at 24
alex41 [277]

Answer:

h=12.41m

Explanation:

N=392

r=0.6m

w=24 rad/s

I=0.8*m*r^{2}

So the weight of the wheel is the force N divide on the gravity and also can find momentum of inertia to determine the kinetic energy at motion

N=m*g\\m=\frac{N}{g}\\m=\frac{392N}{9.8\frac{m}{s^{2}}}

m=40kg

moment of inertia

M_{I}=0.8*40.0kg*(0.6m} )^{2}\\M_{I}=11.5 kg*m^{2}

Kinetic energy of the rotation motion

K_{r}=\frac{1}{2}*I*W^{2}\\K_{r}=\frac{1}{2}*11.52kg*m^{2}*(24\frac{rad}{s})^{2}\\K_{r}=3317.76J

Kinetic energy translational

K_{t}=\frac{1}{2}*m*v^{2}\\v=w*r\\v=24rad/s*0.6m=14.4 \frac{m}{s}\\K_{t}=\frac{1}{2}*40kg*(14.4\frac{m}{s})^{2}\\K_{t}=4147.2J

Total kinetic energy  

K=3317.79J+4147.2J\\K=7464.99J

Now the work done by the friction is acting at the motion so the kinetic energy and the work of motion give the potential work so there we can find height

K-W=E_{p}\\7464.99-2600J=m*g*h\\4864.99J=m*g*h\\h=\frac{4864.99J}{m*g}\\h=\frac{4864.99J}{392N}\\h=12.41m

6 0
3 years ago
What’s is the relationship between energy and motion ?
LekaFEV [45]
Motion energy is the sum of potential and kinetic energy in an object that is used to do work.
5 0
3 years ago
How can people reach their full potential?
PolarNik [594]
If they have self motivation or others motivation, they will show their full potential.
6 0
4 years ago
Two steamrollers begin 100 m apart and head toward each other, each at a constant speed of 1.00 m/s . At the same instant, a fly
Debora [2.8K]

Answer:

The fly travels 2.4 m

Explanation:

Since the Two steamrollers begin 100 m apart and head toward each other, each at a constant speed of 1.00 m/s, we can find the time until they crash by the formula:

Distance = Speed × Time

Time = Distance /Speed

Time = (100 m) / (1 m/s)

Time = 100 hours

Now, the fly will spend the same amount of time traveling as the steamrollers.

Since the fly moves at a speed of 2.4 m/s and we have a time of one hour the steamroller take to collide, then the fly will go a distance of;

Distance = speed x time = 2.4 × 1 = 2.4 m

4 0
3 years ago
Please help me
Helen [10]

Answer:

15 protons and 18 electrons

General Formulas and Concepts:

<u>Chemistry</u>

  • Reading a Periodic Table
  • Element Number
  • Neutral Atoms
  • Ions

Explanation:

We are given the element P. P is 15 on the Periodic Table, meaning it has 15 protons and 15 electrons (all elements are in neutral form).

P³⁻ ion means the element now has a negative charge of 3. We know protons have a positive charge and electrons have a negative charge. 3- means we will have more electrons than protons.

Therefore, P³⁻ would have 15 protons and <em>18</em> electrons:

15 (+) + 18 (-) = 3 (-)

7 0
3 years ago
Read 2 more answers
Other questions:
  • Facts about light years
    5·2 answers
  • A bird flies 3.7 meters in 46 seconds, what is its speed?
    10·1 answer
  • When it is necessary to switch on an electrical current from a remote location, which devices could be used?
    13·2 answers
  • Drag each label to the correct location. Sort the sentences based on whether they describe the properties of a heterogeneous or
    9·1 answer
  • If the car’s speed decreases at a constant rate from 64 mi/h to 30 mi/h in 3.0 s, what is the magnitude of its acceleration, ass
    12·1 answer
  • A spatially challenged goldfish swims along the x-axis only. Its initial position is 7.8 m. After swimming back and forth a whil
    13·1 answer
  • What's the answers for all of the questions ?///
    11·1 answer
  • A student pushes against a wall with a force of 30N. The wall does not move. What amount of force does the wall exert on the stu
    6·2 answers
  • QUESTION 1 Linear Motion
    5·1 answer
  • Three origin, the identical second point to the charges right of atx 2.0 hc 50 cm, are and placed the on thrd the 1s at x-axis.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!