Answer:
Explanation:
Water waves are generally a transverse wave which do not cause permanent displacement of molecules of the medium. Transverse waves are waves in which the direction of propagation of the wave is perpendicular to the direction of vibration of the particles of the medium.
As the wave propagates from one point to another on the surface of water transferring energy, a molecule of water on its surface vibrates upwards and downwards. Its motion is perpendicular to the direction of propagation of the wave. After the vibration, it comes back to its initial position.
Answer:
C) True. S increases with time, v₁ = gt and v₂ = g (t-t₀) we see that for the same t v₁> v₂
Explanation:
You have several statements and we must select which ones are correct. The best way to do this is to raise the problem.
Let's use the vertical launch equation. The positive sign because they indicate that the felt downward is taken as an opponent.
Stone 1
y₁ = v₀₁ t + ½ g t²
y₁ = 0 + ½ g t²
Rock2
It comes out a little later, let's say a second later, we can use the same stopwatch
t ’= (t-t₀)
y₂ = v₀₂ t ’+ ½ g t’²
y₂ = 0 + ½ g (t-t₀)²
y₂ = + ½ g (t-t₀)²
Let's calculate the distance between the two rocks, it should be clear that this equation is valid only for t> = to
S = y₁ -y₂
S = ½ g t²– ½ g (t-t₀)²
S = ½ g [t² - (t²- 2 t to + to²)]
S = ½ g (2 t t₀ - t₀²)
S = ½ g t₀ (2 t -t₀)
This is the separation of the two bodies as time passes, the amount outside the Parentheses is constant.
For t <to. The rock y has not left and the distance increases
For t> = to. the ratio (2t/to-1)> 1 therefore the distance increases as time
passes
Now we can analyze the different statements
A) false. The difference in height increases over time
B) False S increases
C) Certain s increases with time, v₁ = gt and V₂ = g (t-t₀) we see that for the same t v₁> v₂
Answer:
Speed at which it will reach the ground is given as

Total time for which it will remain in air is given as
t = 6.3 s
Explanation:
As we know that the object is projected upwards with speed


now when it will reach the ground then we have

so we have


so we have

Now speed of the object when it reaches the ground is given as



Answer:
The SI unit of time is second (s) and temperature is Kelvin (K)
Explanation:
hope it is helpful to you
The runner has initial velocity vector

and acceleration vector

so that her velocity at time
is

She runs directly east when the vertical component of
is 0:

It's not clear what you're supposed to find at this particular time... possibly her position vector? In that case, assuming she starts at the origin, her position at time
would be

so that after 10.4 s, her position would be

which is 19.9 m away from her starting position.