28 ÷ 2 = 14. you need 14 cups of each nut to get a total of 28 cups combined
Answer:
The factorization of
is 
Step-by-step explanation:
This is a case of factorization by <em>sum and difference of cubes</em>, this type of factorization applies only in binomials of the form
or
. It is easy to recognize because the coefficients of the terms are <u><em>perfect cube numbers</em></u> (which means numbers that have exact cubic root, such as 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, etc.) and the exponents of the letters a and b are multiples of three (such as 3, 6, 9, 12, 15, 18, etc.).
Let's solve the factorization of
by using the <em>sum and difference of cubes </em>factorization.
1.) We calculate the cubic root of each term in the equation
, and the exponent of the letter x is divided by 3.
![\sqrt[3]{729x^{15}} =9x^{5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B729x%5E%7B15%7D%7D%20%3D9x%5E%7B5%7D)
then ![\sqrt[3]{10^{3}} =10](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B10%5E%7B3%7D%7D%20%3D10)
So, we got that
which has the form of
which means is a <em>sum of cubes.</em>
<em>Sum of cubes</em>

with
y 
2.) Solving the sum of cubes.


.
Answer:
-3x - 5
Step-by-step explanation:
Answer:

Step-by-step explanation:
Given:
A car starts with a dull tank of gas
1/7 of the gas has been used around the city.
With the rest of the gas in the car, the car can travel to and from Ottawa three times.
Question asked:
What fractions of a tank of gas does each complete trip to Ottawa use?
Solution:
Fuel used around the city = 
Remaining fuel after driving around the city = 1 -
= 
According to question:
As from the rest of the gas in the car that is
, the car can complete 3 trip to Ottawa which means,
By unitary method:
The car can complete 3 trip by using =
tank of gas.
The car can complete 1 trip by using = 
=
= 
=
tank of gas
Thus,
tank of gas used for each complete trip to Ottawa.
Answer:
80% off
Step-by-step explanation:
(0.15 - 0.75)/0.75 = -0.8 = -80%