1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ANEK [815]
2 years ago
10

Solve for x: −2x + 5 < 7 x > −1 x < −1 x > −6 x < −6

Mathematics
2 answers:
AysviL [449]2 years ago
7 0

- 2x + 5 < 7

- 2x  < 7 - 5

- 2x < 2

- x <  \frac{2}{2}

- x < 1

x <  - 1

So, Answer is <em><u>"</u></em><em><u> </u></em><em><u>x<</u></em><em><u> </u></em><em><u>-</u></em><em><u>1</u></em><em><u>"</u></em>

<em>Hope</em><em> it</em><em> helps</em><em> you</em><em>.</em><em>.</em><em>.</em>

<em>A</em><em>nswered </em><em>by </em><em>Benjemin</em><em> ☺️</em>

<em>✅</em>

mars1129 [50]2 years ago
5 0

hopefully this helps :)

You might be interested in
Two bottles of water have a mass of 4 kilograms. How many grams is 4 kilograms?
Llana [10]
A kg is 1000 grams, so you would 1000*4.
5 0
2 years ago
Read 2 more answers
Help asap , algebra 1
r-ruslan [8.4K]

Answer: SOMEONE LITERALLY ASKED ME THIS YESTERDAY. Also, the answer is t-3<26

Step-by-step explanation:

Just convert it into numbers.

3 0
2 years ago
Read 2 more answers
Julianne opens a dance studio. Her start-up costs for the building, advertising, and supplies $52,000. Each day, she spends $650
amid [387]

<u>Answer-</u>

The equation is 960d-650d = 52000 and Julianne will begin making a profit after 168 days.

<u>Solution-</u>

Julianne's start-up cost = $52,000,

Each day, she spends = $650,

and she earns = $960 per day,

If 'd' is the number of days to overcome the start-up and daily operation cost, then  

total operation cost of d days = $650d and  

total student lesson fees earned in d days = $960d

∴ The equation to represent the situation is,

960d-650d = 52000

∴ Julianne will begin making a profit,

\Rightarrow 960d-650d \geq 52000

\Rightarrow 310d \geq 52000

\Rightarrow d \geq \frac{52000}{310} =167.74 \approx168(ans)





8 0
2 years ago
We have two fair three-sided dice, indexed by i = 1, 2. Each die has sides labeled 1, 2, and 3. We roll the two dice independent
Bogdan [553]

Answer:

(a) P(X = 0) = 1/3

(b) P(X = 1) = 2/9

(c) P(X = −2) = 1/9

(d) P(X = 3) = 0

(a) P(Y = 0) = 0

(b) P(Y = 1) = 1/3

(c) P(Y = 2) = 1/3

Step-by-step explanation:

Given:

- Two 3-sided fair die.

- Random Variable X_1 denotes the number you get for rolling 1st die.

- Random Variable X_2 denotes the number you get for rolling 2nd die.

- Random Variable X = X_2 - X_1.

Solution:

- First we will develop a probability distribution of X such that it is defined by the difference of second and first roll of die.

- Possible outcomes of X : { - 2 , -1 , 0 ,1 , 2 }

- The corresponding probabilities for each outcome are:

                  ( X = -2 ):  { X_2 = 1 , X_1 = 3 }

                  P ( X = -2 ):  P ( X_2 = 1 ) * P ( X_1 = 3 )

                                 :  ( 1 / 3 ) * ( 1 / 3 )

                                 : ( 1 / 9 )

   

                  ( X = -1 ):  { X_2 = 1 , X_1 = 2 } + { X_2 = 2 , X_1 = 3 }

                 P ( X = -1 ):  P ( X_2 = 1 ) * P ( X_1 = 3 ) + P ( X_2 = 2 ) * P ( X_1 = 3)

                                 :  ( 1 / 3 ) * ( 1 / 3 ) + ( 1 / 3 ) * ( 1 / 3 )

                                 : ( 2 / 9 )

         

       ( X = 0 ):  { X_2 = 1 , X_1 = 1 } + { X_2 = 2 , X_1 = 2 } +  { X_2 = 3 , X_1 = 3 }

       P ( X = -1 ):P ( X_2 = 1 )*P ( X_1 = 1 )+P( X_2 = 2 )*P ( X_1 = 2)+P( X_2 = 3 )*P ( X_1 = 3)

                                 :  ( 1 / 3 ) * ( 1 / 3 ) + ( 1 / 3 ) * ( 1 / 3 ) + ( 1 / 3 ) * ( 1 / 3 )

                                 : ( 3 / 9 ) = ( 1 / 3 )

       

                    ( X = 1 ):  { X_2 = 2 , X_1 = 1 } + { X_2 = 3 , X_1 = 2 }

                 P ( X = 1 ):  P ( X_2 = 2 ) * P ( X_1 = 1 ) + P ( X_2 = 3 ) * P ( X_1 = 2)

                                 :  ( 1 / 3 ) * ( 1 / 3 ) + ( 1 / 3 ) * ( 1 / 3 )

                                 : ( 2 / 9 )

                    ( X = 2 ):  { X_2 = 1 , X_1 = 3 }

                  P ( X = 2 ):  P ( X_2 = 3 ) * P ( X_1 = 1 )

                                    :  ( 1 / 3 ) * ( 1 / 3 )

                                    : ( 1 / 9 )                  

- The distribution Y = X_2,

                          P(Y=0) = 0

                          P(Y=1) =  1/3

                          P(Y=2) = 1/ 3

- The probability for each number of 3 sided die is same = 1 / 3.

7 0
3 years ago
1⁄2 × 1⁄5 =<br><br> help//.....
skad [1K]

Answer:

1/10

Step-by-step explanation:

1/2 * 1/5

Multiply the numerators

1*1 = 1

Multiply the denominators

2*5 =10

Numerator over denominator

1/10

7 0
2 years ago
Read 2 more answers
Other questions:
  • Two less than six times the difference of a number and five
    8·2 answers
  • Round .895 to the nearest hundredths
    12·2 answers
  • Evaluate the expression when c=5 and x= -5.<br> -9c+x
    13·1 answer
  • Suppose A is a positive real number and mA is the average value of (sin(Ax))3 on the
    9·1 answer
  • Evaluate pq for p=-5 and q=9
    13·1 answer
  • Find the slope of the line passing through the points using the slope formula
    6·1 answer
  • The count of bacteria in a certain experiment was increasing at a rate of 2.5% per hour. if the experiment started with 1600. fi
    13·1 answer
  • Tiffani buys a new pair of shoes. She spends $81 including an 8% sales tax. What was the original price of the shoes to the near
    6·1 answer
  • A rectangle has a perimeter of 150 cm. The length is 3 cm more than twice the width. Find the length and width of the rectangle.
    11·1 answer
  • Dallas was told to run around the perimeter of the high
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!