Answer:
360,360 groups of 5 people.
Step-by-step explanation:
We have been given that there are 15 people in an office with 5 different phone lines. We are asked to find groups of 5 people that can answer these lines, if all the lines begin to ring at once.
We will use fundamental principle of counting to solve our given problem.
There are 15 people to answer 1st line, that will leave us with 14 people to answer 2nd line.
Now, we will have 13 people to answer 3rd line, that will leave us with 12 people to answer 4th line.
There are 11 people to answer 5th call.
So 5 lines can be answered in
ways.
Therefore, 360,360 groups of 5 people can answer these lines.
Step-by-step explanation:
Draw diagonal AC
The triangle ABC has sides 17 and 25
Say AB is 17, BC is 25
Draw altitude on side BC from A , say h
h = 17 sin B
Area = 25*17 sin B = 408
sin B = 24/25
In ∆ ABC
Cos B = +- 7/25
= 625 + 289 — b^2 / 2*25*17
b^2 = 914 — 14*17 = 676
b = 26
h = 17*24/25 = 408/25 = 16.32
Draw the second diagonal BD
In ∆ BCD, draw altitude from D, say DE =h
BD^2 = h^2 + {(25 + sqrt (289 -h^2) }^2
BD^2 = 16.32^2 + (25 + 4.76)^2
= 885.6576 + 266.3424
BD = √ 1152 = 33.94 m
Answer:
0 real # solution
Step-by-step explanation:
b^2-4ac<1 is equal to 0 real number solution and
-5(2+1)=-22+10
-5(2+1)=-12
which is less than 1
Step-by-step explanation:
The equation of a circle can be the expanded form of
\large \text{$(x-a)^2+(y-b)^2=r^2$}(x−a)
2
+(y−b)
2
=r
2
where rr is the radius of the circle, (a,\ b)(a, b) is the center of the circle, and (x,\ y)(x, y) is a point on the circle.
Here, the equation of the circle is,
\begin{gathered}\begin{aligned}&x^2+y^2+10x-4y-20&=&\ \ 0\\ \\ \Longrightarrow\ \ &x^2+y^2+10x-4y+25+4-49&=&\ \ 0\\ \\ \Longrightarrow\ \ &x^2+y^2+10x-4y+25+4&=&\ \ 49\\ \\ \Longrightarrow\ \ &x^2+10x+25+y^2-4y+4&=&\ \ 49\\ \\ \Longrightarrow\ \ &(x+5)^2+(y-2)^2&=&\ \ 7^2\end{aligned}\end{gathered}
⟹
⟹
⟹
⟹
x
2
+y
2
+10x−4y−20
x
2
+y
2
+10x−4y+25+4−49
x
2
+y
2
+10x−4y+25+4
x
2
+10x+25+y
2
−4y+4
(x+5)
2
+(y−2)
2
=
=
=
=
=
0
0
49
49
7
2
From this, we get two things:
\begin{gathered}\begin{aligned}1.&\ \ \textsf{Center of the circle is $(-5,\ 2)$.}\\ \\ 2.&\ \ \textsf{Radius of the circle is $\bold{7}$ units. }\end{aligned}\end{gathered}
1.
2.
Center of the circle is (−5, 2).
Radius of the circle is 7 units.
Hence the radius is 7 units.