1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Deffense [45]
3 years ago
7

HELP MEeeeeeeeee g: R² → R a differentiable function at (0, 0), with g (x, y) = 0 only at the point (x, y) = (0, 0). Consider

g src="https://tex.z-dn.net/?f=f%28x%2Cy%29%5Cleft%20%5C%7B%20%7B%7B%5Cfrac%7Btan%5E2%28g%28x%2Cy%29%29%20if%20%28x%2Cy%29%5Cneq%20%280%2C0%29%7D%7Bg%28x%2Cy%29%20%7D%20%7D%20%5Catop%20%7B0%20if%20%28x%2Cy%29%3D%280%2C0%29%7D%7D%20%5Cright." id="TexFormula1" title="f(x,y)\left \{ {{\frac{tan^2(g(x,y)) if (x,y)\neq (0,0)}{g(x,y) } } \atop {0 if (x,y)=(0,0)}} \right." alt="f(x,y)\left \{ {{\frac{tan^2(g(x,y)) if (x,y)\neq (0,0)}{g(x,y) } } \atop {0 if (x,y)=(0,0)}} \right." align="absmiddle" class="latex-formula">
(a) Calculate as partial derivatives of f in (0, 0), in terms of the partial derivatives of g.

(b) Show that f is differentiable at (0, 0).
Mathematics
1 answer:
GrogVix [38]3 years ago
3 0

(a) This follows from the definition for the partial derivative, with the help of some limit properties and a well-known limit.

• Recall that for f:\mathbb R^2\to\mathbb R, we have the partial derivative with respect to x defined as

\displaystyle \frac{\partial f}{\partial x} = \lim_{h\to0}\frac{f(x+h,y) - f(x,y)}h

The derivative at (0, 0) is then

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{f(0+h,0) - f(0,0)}h

• By definition of f, f(0,0)=0, so

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{f(h,0)}h = \lim_{h\to0}\frac{\tan^2(g(h,0))}{h\cdot g(h,0)}

• Expanding the tangent in terms of sine and cosine gives

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{\sin^2(g(h,0))}{h\cdot g(h,0) \cdot \cos^2(g(h,0))}

• Introduce a factor of g(h,0) in the numerator, then distribute the limit over the resulting product as

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{\sin^2(g(h,0))}{g(h,0)^2} \cdot \lim_{h\to0}\frac1{\cos^2(g(h,0))} \cdot \lim_{h\to0}\frac{g(h,0)}h

• The first limit is 1; recall that for a\neq0, we have

\displaystyle\lim_{x\to0}\frac{\sin(ax)}{ax}=1

The second limit is also 1, which should be obvious.

• In the remaining limit, we end up with

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{g(h,0)}h = \lim_{h\to0}\frac{g(h,0)-g(0,0)}h

and this is exactly the partial derivative of g with respect to x.

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{g(h,0)-g(0,0)}h = \frac{\partial g}{\partial x}(0,0)

For the same reasons shown above,

\displaystyle \frac{\partial f}{\partial y}(0,0) = \frac{\partial g}{\partial y}(0,0)

(b) To show that f is differentiable at (0, 0), we first need to show that f is continuous.

• By definition of continuity, we need to show that

\left|f(x,y)-f(0,0)\right|

is very small, and that as we move the point (x,y) closer to the origin, f(x,y) converges to f(0,0).

We have

\left|f(x,y)-f(0,0)\right| = \left|\dfrac{\tan^2(g(x,y))}{g(x,y)}\right| \\\\ = \left|\dfrac{\sin^2(g(x,y))}{g(x,y)^2}\cdot\dfrac{g(x,y)}{\cos^2(g(x,y))}\right| \\\\ = \left|\dfrac{\sin(g(x,y))}{g(x,y)}\right|^2 \cdot \dfrac{|g(x,y)|}{\cos^2(x,y)}

The first expression in the product is bounded above by 1, since |\sin(x)|\le|x| for all x. Then as (x,y) approaches the origin,

\displaystyle\lim_{(x,y)\to(0,0)}\frac{|g(x,y)|}{\cos^2(x,y)} = 0

So, f is continuous at the origin.

• Now that we have continuity established, we need to show that the derivative exists at (0, 0), which amounts to showing that the rate at which f(x,y) changes as we move the point (x,y) closer to the origin, given by

\left|\dfrac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}}\right|,

approaches 0.

Just like before,

\left|\dfrac{\tan^2(g(x,y))}{g(x,y)\sqrt{x^2+y^2}}\right| = \left|\dfrac{\sin^2(g(x,y))}{g(x,y)}\right|^2 \cdot \left|\dfrac{g(x,y)}{\cos^2(g(x,y))\sqrt{x^2+y^2}}\right| \\\\ \le \dfrac{|g(x,y)|}{\cos^2(g(x,y))\sqrt{x^2+y^2}}

and this converges to g(0,0)=0, since differentiability of g means

\displaystyle \lim_{(x,y)\to(0,0)}\frac{g(x,y)-g(0,0)}{\sqrt{x^2+y^2}}=0

So, f is differentiable at (0, 0).

You might be interested in
HELP PLZ IT IMPORTANT.
azamat

Answer:

14 sq inches

Step-by-step explanation:

you have the top and bottom = 2

then 3 * 4 for the sides, front, and back = 12

add them together and you have 14

thats for the parts you can see on the outside. i hope i did this right

8 0
3 years ago
Does the equation 2x+ 3y=-6, 4x+6y=-12 have infinetley many solutions
Vadim26 [7]

Answer:

Yes it has infinity of solutions.

Step-by-step explanation:

If you plug in certain numbers it will make the statements true.

5 0
2 years ago
Read 2 more answers
God please help me plz
Nat2105 [25]
You convert 432 sq inches into inches so 20.7846. Then you times that by 6. The answer is 124.7076 and if rounded 124.7
8 0
3 years ago
Devin wants to buy some t-shirts from a store in the mall. He has $20 in his pocket and the t-shirts cost $5 each. The situation
avanturin [10]

Answer:20-5t+=

Step-by-step explanation:

7 0
3 years ago
What is the verbal expression for 15+r
exis [7]
Your answer is going to be fifteen plus r
5 0
3 years ago
Read 2 more answers
Other questions:
  • A line passes through the points (1, 4) and (3, –4). Which is the equation of the line?
    15·2 answers
  • The area of a rectangular field is 2c3 − c2 + 6 square units. If the length of the field is c − 2 units, what is its width? The
    13·1 answer
  • Toni can carry up to 13 lb in her backpack. Her lunch weighs 1 lb, her gym clothes weigh 2 lb, and her books (b) weigh 2 lb each
    14·1 answer
  • The table shows the number of jars of jelly that Mr. Fields can make with different numbers of ounces of berries.
    6·1 answer
  • Solve the system of equations Please If you could solve this it would honestly mean so much! Thank you!
    8·1 answer
  • Help, with this multiple choice question?
    10·1 answer
  • Is (2,10) a solution to this system of inequalities​
    13·1 answer
  • Abigail is putting tiles on a tabletop. She needs 48 tiles for each of 8 rows. Each row will have 6 white tiles. The rest of the
    11·1 answer
  • Let x = 4. Evaluate the expression.<br><br> x−3
    5·2 answers
  • One attempt left!!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!