1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Deffense [45]
3 years ago
7

HELP MEeeeeeeeee g: R² → R a differentiable function at (0, 0), with g (x, y) = 0 only at the point (x, y) = (0, 0). Consider

g src="https://tex.z-dn.net/?f=f%28x%2Cy%29%5Cleft%20%5C%7B%20%7B%7B%5Cfrac%7Btan%5E2%28g%28x%2Cy%29%29%20if%20%28x%2Cy%29%5Cneq%20%280%2C0%29%7D%7Bg%28x%2Cy%29%20%7D%20%7D%20%5Catop%20%7B0%20if%20%28x%2Cy%29%3D%280%2C0%29%7D%7D%20%5Cright." id="TexFormula1" title="f(x,y)\left \{ {{\frac{tan^2(g(x,y)) if (x,y)\neq (0,0)}{g(x,y) } } \atop {0 if (x,y)=(0,0)}} \right." alt="f(x,y)\left \{ {{\frac{tan^2(g(x,y)) if (x,y)\neq (0,0)}{g(x,y) } } \atop {0 if (x,y)=(0,0)}} \right." align="absmiddle" class="latex-formula">
(a) Calculate as partial derivatives of f in (0, 0), in terms of the partial derivatives of g.

(b) Show that f is differentiable at (0, 0).
Mathematics
1 answer:
GrogVix [38]3 years ago
3 0

(a) This follows from the definition for the partial derivative, with the help of some limit properties and a well-known limit.

• Recall that for f:\mathbb R^2\to\mathbb R, we have the partial derivative with respect to x defined as

\displaystyle \frac{\partial f}{\partial x} = \lim_{h\to0}\frac{f(x+h,y) - f(x,y)}h

The derivative at (0, 0) is then

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{f(0+h,0) - f(0,0)}h

• By definition of f, f(0,0)=0, so

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{f(h,0)}h = \lim_{h\to0}\frac{\tan^2(g(h,0))}{h\cdot g(h,0)}

• Expanding the tangent in terms of sine and cosine gives

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{\sin^2(g(h,0))}{h\cdot g(h,0) \cdot \cos^2(g(h,0))}

• Introduce a factor of g(h,0) in the numerator, then distribute the limit over the resulting product as

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{\sin^2(g(h,0))}{g(h,0)^2} \cdot \lim_{h\to0}\frac1{\cos^2(g(h,0))} \cdot \lim_{h\to0}\frac{g(h,0)}h

• The first limit is 1; recall that for a\neq0, we have

\displaystyle\lim_{x\to0}\frac{\sin(ax)}{ax}=1

The second limit is also 1, which should be obvious.

• In the remaining limit, we end up with

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{g(h,0)}h = \lim_{h\to0}\frac{g(h,0)-g(0,0)}h

and this is exactly the partial derivative of g with respect to x.

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{g(h,0)-g(0,0)}h = \frac{\partial g}{\partial x}(0,0)

For the same reasons shown above,

\displaystyle \frac{\partial f}{\partial y}(0,0) = \frac{\partial g}{\partial y}(0,0)

(b) To show that f is differentiable at (0, 0), we first need to show that f is continuous.

• By definition of continuity, we need to show that

\left|f(x,y)-f(0,0)\right|

is very small, and that as we move the point (x,y) closer to the origin, f(x,y) converges to f(0,0).

We have

\left|f(x,y)-f(0,0)\right| = \left|\dfrac{\tan^2(g(x,y))}{g(x,y)}\right| \\\\ = \left|\dfrac{\sin^2(g(x,y))}{g(x,y)^2}\cdot\dfrac{g(x,y)}{\cos^2(g(x,y))}\right| \\\\ = \left|\dfrac{\sin(g(x,y))}{g(x,y)}\right|^2 \cdot \dfrac{|g(x,y)|}{\cos^2(x,y)}

The first expression in the product is bounded above by 1, since |\sin(x)|\le|x| for all x. Then as (x,y) approaches the origin,

\displaystyle\lim_{(x,y)\to(0,0)}\frac{|g(x,y)|}{\cos^2(x,y)} = 0

So, f is continuous at the origin.

• Now that we have continuity established, we need to show that the derivative exists at (0, 0), which amounts to showing that the rate at which f(x,y) changes as we move the point (x,y) closer to the origin, given by

\left|\dfrac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}}\right|,

approaches 0.

Just like before,

\left|\dfrac{\tan^2(g(x,y))}{g(x,y)\sqrt{x^2+y^2}}\right| = \left|\dfrac{\sin^2(g(x,y))}{g(x,y)}\right|^2 \cdot \left|\dfrac{g(x,y)}{\cos^2(g(x,y))\sqrt{x^2+y^2}}\right| \\\\ \le \dfrac{|g(x,y)|}{\cos^2(g(x,y))\sqrt{x^2+y^2}}

and this converges to g(0,0)=0, since differentiability of g means

\displaystyle \lim_{(x,y)\to(0,0)}\frac{g(x,y)-g(0,0)}{\sqrt{x^2+y^2}}=0

So, f is differentiable at (0, 0).

You might be interested in
What is 10/n = 15/45 solved?
Lina20 [59]
The answer would be 3.33333. I think because 10*15= 150. Then you would divide it by 45 and you would get 3.333. If you get it wrong im sorry.
8 0
3 years ago
I need help rlly bad I have no idea what’s the answer plsss help me!!!
valina [46]
So you can see the right angle is 90
7 0
2 years ago
Read 2 more answers
PLEASE! GEOMETRY
Rzqust [24]

GF = GH
<F = <H
<E=<G
or
<EGF = <HGJ

answer
<span>e) AAS
</span><span>d) ASA</span>
8 0
3 years ago
Read 2 more answers
Need answer please help no links
babymother [125]
The answer is 5 feet I think
8 0
2 years ago
What is the difference between a relation and a function in mathematics?
Alexandra [31]
A relation are two sets of elements noted as input and output. Within relations, the input and the output have something in common.

A function is also about input and output but in a function, the input has nothing in common with the output.
6 0
3 years ago
Other questions:
  • there are about 290 kids in a school. if there are 14 teachers and 5 subs how many kids would be in a class with teachers and su
    11·2 answers
  • What is the area of this face ?
    5·2 answers
  • 2 Look at the open number line in<br> Problem 1. How would you change the<br> numbers to show 9 + 5?
    9·1 answer
  • System of Linear Equations In Exercises 25–38, solve the system using ei ther Gaussian elimination with back-substitution or Gau
    12·1 answer
  • F(x)=20/4+3e−0.2x
    8·1 answer
  • It was -5°C in Copenhagen and -12°C in Oslo. which city was colder?​
    6·1 answer
  • The Wright's backyard pool is in the shape of a rectangular prism. The length of the pool is 24 feet, the width is 16 feet, and
    7·1 answer
  • Factor 54-12 with GCF
    5·1 answer
  • Solve for n: 0.22n = 6.6. <br><br><br>​
    7·1 answer
  • Helppppppppppppppppp
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!