1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Deffense [45]
3 years ago
7

HELP MEeeeeeeeee g: R² → R a differentiable function at (0, 0), with g (x, y) = 0 only at the point (x, y) = (0, 0). Consider

g src="https://tex.z-dn.net/?f=f%28x%2Cy%29%5Cleft%20%5C%7B%20%7B%7B%5Cfrac%7Btan%5E2%28g%28x%2Cy%29%29%20if%20%28x%2Cy%29%5Cneq%20%280%2C0%29%7D%7Bg%28x%2Cy%29%20%7D%20%7D%20%5Catop%20%7B0%20if%20%28x%2Cy%29%3D%280%2C0%29%7D%7D%20%5Cright." id="TexFormula1" title="f(x,y)\left \{ {{\frac{tan^2(g(x,y)) if (x,y)\neq (0,0)}{g(x,y) } } \atop {0 if (x,y)=(0,0)}} \right." alt="f(x,y)\left \{ {{\frac{tan^2(g(x,y)) if (x,y)\neq (0,0)}{g(x,y) } } \atop {0 if (x,y)=(0,0)}} \right." align="absmiddle" class="latex-formula">
(a) Calculate as partial derivatives of f in (0, 0), in terms of the partial derivatives of g.

(b) Show that f is differentiable at (0, 0).
Mathematics
1 answer:
GrogVix [38]3 years ago
3 0

(a) This follows from the definition for the partial derivative, with the help of some limit properties and a well-known limit.

• Recall that for f:\mathbb R^2\to\mathbb R, we have the partial derivative with respect to x defined as

\displaystyle \frac{\partial f}{\partial x} = \lim_{h\to0}\frac{f(x+h,y) - f(x,y)}h

The derivative at (0, 0) is then

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{f(0+h,0) - f(0,0)}h

• By definition of f, f(0,0)=0, so

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{f(h,0)}h = \lim_{h\to0}\frac{\tan^2(g(h,0))}{h\cdot g(h,0)}

• Expanding the tangent in terms of sine and cosine gives

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{\sin^2(g(h,0))}{h\cdot g(h,0) \cdot \cos^2(g(h,0))}

• Introduce a factor of g(h,0) in the numerator, then distribute the limit over the resulting product as

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{\sin^2(g(h,0))}{g(h,0)^2} \cdot \lim_{h\to0}\frac1{\cos^2(g(h,0))} \cdot \lim_{h\to0}\frac{g(h,0)}h

• The first limit is 1; recall that for a\neq0, we have

\displaystyle\lim_{x\to0}\frac{\sin(ax)}{ax}=1

The second limit is also 1, which should be obvious.

• In the remaining limit, we end up with

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{g(h,0)}h = \lim_{h\to0}\frac{g(h,0)-g(0,0)}h

and this is exactly the partial derivative of g with respect to x.

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{g(h,0)-g(0,0)}h = \frac{\partial g}{\partial x}(0,0)

For the same reasons shown above,

\displaystyle \frac{\partial f}{\partial y}(0,0) = \frac{\partial g}{\partial y}(0,0)

(b) To show that f is differentiable at (0, 0), we first need to show that f is continuous.

• By definition of continuity, we need to show that

\left|f(x,y)-f(0,0)\right|

is very small, and that as we move the point (x,y) closer to the origin, f(x,y) converges to f(0,0).

We have

\left|f(x,y)-f(0,0)\right| = \left|\dfrac{\tan^2(g(x,y))}{g(x,y)}\right| \\\\ = \left|\dfrac{\sin^2(g(x,y))}{g(x,y)^2}\cdot\dfrac{g(x,y)}{\cos^2(g(x,y))}\right| \\\\ = \left|\dfrac{\sin(g(x,y))}{g(x,y)}\right|^2 \cdot \dfrac{|g(x,y)|}{\cos^2(x,y)}

The first expression in the product is bounded above by 1, since |\sin(x)|\le|x| for all x. Then as (x,y) approaches the origin,

\displaystyle\lim_{(x,y)\to(0,0)}\frac{|g(x,y)|}{\cos^2(x,y)} = 0

So, f is continuous at the origin.

• Now that we have continuity established, we need to show that the derivative exists at (0, 0), which amounts to showing that the rate at which f(x,y) changes as we move the point (x,y) closer to the origin, given by

\left|\dfrac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}}\right|,

approaches 0.

Just like before,

\left|\dfrac{\tan^2(g(x,y))}{g(x,y)\sqrt{x^2+y^2}}\right| = \left|\dfrac{\sin^2(g(x,y))}{g(x,y)}\right|^2 \cdot \left|\dfrac{g(x,y)}{\cos^2(g(x,y))\sqrt{x^2+y^2}}\right| \\\\ \le \dfrac{|g(x,y)|}{\cos^2(g(x,y))\sqrt{x^2+y^2}}

and this converges to g(0,0)=0, since differentiability of g means

\displaystyle \lim_{(x,y)\to(0,0)}\frac{g(x,y)-g(0,0)}{\sqrt{x^2+y^2}}=0

So, f is differentiable at (0, 0).

You might be interested in
A line is drawn through (-7, 11) and (8.-9). The equation
gavmur [86]

Answer:

this answer has to be A because the libra of the pole goes west

Step-by-step explanation:

this answer has to be A because the libra of the pole goes west

8 0
3 years ago
How much rice will each person have if 3 people shared 1/2 lb of rice equally
svet-max [94.6K]
1/2 = 3/6

Each person would have 1/6 of rice. 
6 0
3 years ago
Read 2 more answers
How many solutions does this equation have?
IgorLugansk [536]

Answer:

C

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
ANYBODY WHO ANSWERS THIS QUESTION CORRECTLY WILL GET 40 POINTS. THE ONES IN GREY ARE THE ANSWER OPTIONS.
masya89 [10]

Answer:

140 students are in the school

Step-by-step explanation:

According to the Pie Chart, 70 students are 50%. So then, you multiply 50% of the survey to get 100% (the entirety surveyed). So 70 x 2 = 140

So there were 140 students in the school.

7 0
3 years ago
Read 2 more answers
Find the perimeter of the rectangle.
algol13
All you have to do is find the length of the sides using the distance formula and then add the lengths together to find the perimeter
8 0
3 years ago
Other questions:
  • Please help!! Subtract.<br><br> 466,932 – 79,385 = (INSERT ANSWER)
    5·1 answer
  • What is the area in square centimeters of 2.4 cm and 5.8 cm
    13·1 answer
  • HELP ITS HARD PLZZZ need help to 1 throw 6
    13·2 answers
  • What is the approximate volume of a cone with a height of 12 in. and radius of 9 in.? Use 3.14 to approximate pi, and express yo
    10·1 answer
  • Divide 33 photoes into 2 groups so the ratio is 4 to 7
    7·2 answers
  • What’s the measure of angel B
    15·1 answer
  • For 0 &lt; theta &lt; 2pi, how many solutions are there to tan(theta/2) = sine(theta)? Note do not include values that are undef
    8·2 answers
  • Simon charges an initial fee plus an hourly fee to repair TVs. The table below shows the amounts Simon charges for the first thr
    7·1 answer
  • <img src="https://tex.z-dn.net/?f=%20-%203x%20%2B%203x%20%2B%206%20%3D%207" id="TexFormula1" title=" - 3x + 3x + 6 = 7" alt=" -
    8·2 answers
  • Help me please
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!