Answer:
The Equilibrium constant K is far greater than 1; K>>1
Explanation:
The equilibrium constant, K, for any given reaction at equilibrium, is defined as the ratio of the concentration of the products raised to their stoichiometric coefficients divided by the concentration of reactants raised to their stoichiometric coefficients.
It tells us more about how how bigger or smaller the concentration of products is to that of the reactants when a reaction attains equilibrium. From the given data, as the color of the reactant mixture (Br2 is reddish-brown, and H2 is colourless) fades, more of the colorless product (HBr is colorless) is being formed as the reaction approaches equilibrium. This indicates yhat the concentration of products becomes relatively higher than that of the reactants as the reaction progresses towards equilibrium, the equilibrium constant K, must be greater than 1 therefore.
Answer:
313, 6grams of H3PO4
Explanation:
We calculate the weight of 1 mol of H3PO4:
Weight 1 mol H3PO4= (Weight H)x3+ (Weight P)+(Weight 0)x4 =1gx3+31g+16gx4
Weight 1 mol H3PO4=98 g /mol
1 mol-----98 grams H3PO4
3,2mol----x= (3,2molx 98 grams H3PO4)/ 1mol=313,6 grams H3PO4
Answer:
C. Hb binds O2 more tightly than Mb.
Explanation:
<u>Hb and Mb are both oxygen carrier protiens which contain the heme group. Hb has 4 heme units in 1 moleucle which work via coperative effect. On the other hand, Mb has only one heme unit. </u>
<u>From above theory, statement A and B are correct.</u>
<u>Although the heme group of the Mb is identical to those of Hb, Mb has a higher affinity for carrying oxygen than hemoglobin.</u>
<u>Hence, Statement C is wrong.</u>
Thats why the function of hemoglobin is to transport oxygen and that of myoglobin is to store oxygen.
<u>When a curve is plotted between oxygen accepted and the pressure of the oxygen, Hb shows sigmoidal, whereas Mb shows hyperbolic oxygen saturation curves.</u><u> The statement D is correct.</u>
<u>Bohr effect and various factors decribe the statement : Hb-oxygen binding is dependent on physiological changes in pH, whereas Mb-oxygen binding is not. </u><u>The statement E is also correct.</u>
B. Biomass
(I guess so cause other ones are already being used)
Answer:
49.2 g/mol
Explanation:
Let's first take account of what we have and convert them into the correct units.
Volume= 236 mL x (
) = .236 L
Pressure= 740 mm Hg x (
)= 0.97 atm
Temperature= 22C + 273= 295 K
mass= 0.443 g
Molar mass is in grams per mole, or MM=
or MM=
. They're all the same.
We have mass (0.443 g) we just need moles. We can find moles with the ideal gas constant PV=nRT. We want to solve for n, so we'll rearrange it to be
n=
, where R (constant)= 0.082 L atm mol-1 K-1
Let's plug in what we know.
n=
n= 0.009 mol
Let's look back at MM=
and plug in what we know.
MM= 
MM= 49.2 g/mol