The answer is 2.53e-5, I unfortunately don't know how you would really show the work other than showing the division.
Answer:
Aluminium (Al): (3*2)+(5*2)=16
Sulphor (S): (3*1)=3
Oxygen (O): (4*3)+(3*1)=15
The volume of N₂ at STP=56 L
<h3>Further explanation</h3>
Given
2.5 moles of N₂
Required
The volume of the gas
Solution
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure). At STP, the volume per mole of gas or the molar volume-Vm is 22.4 liters/mol.
So for 2.5 moles gas :

Answer:
248.4 mL
Explanation:
Erlenmeyer = 78.649 g
Erlenmeyer + Water = 327.039 g
Water = (Erlenmeyer + Water) - Erlenmeyer
Water = 327.039 - 78.649
Water = 248.4 g
if the density of water is 1 g/mL, we can say that each mL of water weigh 1 g, so we have 248.4 mL of water in the Erlenmeyer Flask.
Answer:
Q = 1267720 J
Explanation:
∴ QH2O = mCpΔT
∴ m H2O = 500 g
∴ Cp H2O = 4.186 J/g°C = 4.183 E-3 KJ/g°C
∴ ΔT = 120 - 50 = 70°C
⇒ QH2O = (500 g)(4.183 E-3 KJ/g°C)(70°C) = 146.51 KJ
∴ ΔHv H2O = 40.7 KJ/mol
moles H2O:
∴ mm H2O = 18.015 g/mol
⇒ moles H2O = (500 g)(mol/18.015 g) = 27.548 mol H2O
⇒ ΔHv H2O = (40.7 KJ/mol)(27.548 mol) = 1121.21 KJ
⇒ Qt = 146.51 KJ + 1121.21 KJ = 1267.72 KJ = 1267720 J