The answer is Liquid iron.
This problem is simply converting the concentration from molality to molarity. Molality has units of mol solute/kg solvent, while molarity has units of mol solute/L solution.
2.24 mol H2SO4/kg H2O * (0.25806 kg H2SO4/mol H2SO4) = 0.578 kg H2SO4/kg H2O
That means the solution weighs a total of 1 kg + 0.578 kg = 1.578 kg. Then, convert it to liters using the density data:
1.578 kg * (1000g / 1kg) * (1 mL/1.135 g) = 1390 mL or 1.39 L.
Hence, the molarity is
2.24/1.39 = 1.61 M
Conductivity, malleability, and high melting points. Hope this helps :)
Answer:
47.8 g
Explanation:
Remember the equation for percent yield:
% yield = actual / theoretical
We're given two of the values in the question, so plug n' play:
0.945 = 45.2 / theoretical
theoretical = 47.8 g
Keep in mind you can use mass here without converting to moles because we're working with products only. If you were given a mass of reactants, you would need to convert to moles and using a balanced chemical equation find the corresponding moles of product produced.
What is the percent composition by mass of oxygen in magnesium oxide, MgO?
Answer: 39.7 percent