Given:
bisects ∠RST.

To find:
The
.
Solution:
Since,
bisects ∠RST, therefore
...(1)
Now,

[Using (1)]

![[\text{Given }m\angle RSV=64^\circ]](https://tex.z-dn.net/?f=%5B%5Ctext%7BGiven%20%7Dm%5Cangle%20RSV%3D64%5E%5Ccirc%5D)

Therefore, the value of
is
.
Answer:
True expressions:
- The constants, -3 and -8, are like terms.
- The terms 3 p and p are like terms.
- The terms in the expression are p squared, negative 3, 3 p, negative 8, p, p cubed.
- The expression contains six terms.
- Like terms have the same variables raised to the same powers.
Step-by-step explanation:
The expression is:
p² - 3 + 3p - 8 + p + p³
False expressions:
- The terms p squared, 3 p, p, and p cubed have variables, so they are like terms. (They don't have the same exponents)
- The terms p squared and p cubed are like terms. (They don't have the same exponents)
- The expression contains seven terms. (It contains 6 terms)