Circumference = 2 x radius x Pi
Circumference = 2 x 0.8 x pi
Circumference = 1.6pi or 5.024 yards
area = r^2 x pi
Area = 0.8^2 x pi
Area = 0.64pi or 2.0096 square yards
D is the answer because rise over run is going to left and plus 2 is on the y axis
Okay, so, to find out if an equation has one solution, an infinite number of solutions, or no solutions, we must first solve the equation:
(a) 6x + 4x - 6 = 24 + 9x
First, combine the like-terms on both sides of the equal sign:
10x - 6 = 24 + 9x
Now, we need to get the numbers with the variable 'x,' on the same side, by subtracting, in this case:
10x - 6 = 24 + 9x
-9x. -9x
______________
X - 6 = 24
Now, we do the opposite of subtraction, and add 6 to both sides:
X - 6 = 24
+6 +6
_________
X = 30
So, this particular equation has one solution.
(a). One solution
_____________________________________________________
(b) 25 - 4x = 15 - 3x + 10 - x
Okay, so again, we combine the like-terms, on the same side of the equal sign:
25 - 4x = 25 - 2x
Now, we get the 2 numbers with the variable 'x,' to the same side of the equal sign:
25 - 4x = 25 - 2x
+ 2x + 2x
________________
25 - 2x = 25
Next, we do the opposite of addition, and, subtract 25 on each side:
25 - 2x = 25
-25 -25
___________
-2x = 0
Finally, because we can't divide 0 by -2, this tells us that this has an infinite number of solutions.
(b) An infinite number of solutions.
__________________________________________________
(c) 4x + 8 = 2x + 7 + 2x - 20
Again, we combine the like-terms, on the same side as the equal sign:
4x + 8 = 4x - 13
Now, we get the 'x' variables on the same side, again, and, we do that by doing the opposite of addition, which, is subtraction:
4x + 8 = 4x - 13
-4x -4x
______________
8 = -13
Finally, because there is no longer an 'x' or variable, we know that this equation has no solution.
(c) No Solution
_________________________________
I hope this helps!
Answer:12/1
Step-by-step explanation:
Answer:
B) 25
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
<u>Algebra II</u>
- Distance Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
Point (-1, -8)
Point (-4, -4)
<u>Step 2: Find distance </u><em><u>d</u></em>
Simply plug in the 2 coordinates into the distance formula to find distance <em>d</em>
- Substitute in points [Distance Formula]:

- [√Radical] (Parenthesis) Subtract:

- [√Radical] Evaluate exponents:

- [√Radical] Add:

- [√Radical] Evaluate:
