Step-by-step explanation:
let us give all the quantities in the problem variable names.
x= amount in utility stock
y = amount in electronics stock
c = amount in bond
“The total amount of $200,000 need not be fully invested at any one time.”
becomes
x + y + c ≤ 200, 000,
Also
“The amount invested in the stocks cannot be more than half the total amount invested”
a + b ≤1/2 (total amount invested),
=1/2(x + y + c).
(x+y-c)/2≤0
“The amount invested in the utility stock cannot exceed $40,000”
a ≤ 40, 000
“The amount invested in the bond must be at least $70,000”
c ≥ 70, 000
Putting this all together, our linear optimization problem is:
Maximize z = 1.09x + 1.04y + 1.05c
subject to
x+ y+ c ≤ 200, 000
x/2 +y/2 -c/2 ≤ 0
≤ 40, 000,
c ≥ 70, 000
a ≥ 0, b ≥ 0, c ≥ 0.
The answer to this question is 2.
Let the slower runners speed be X kilometers per hour.
Then the faster runners speed would be X+2 kilometers per hour.
The formula for distance is Speed times time.
The distance is given as 30 kilometers and time is given as 3 hours.
Since there are two runners you need to add the both of them together.
The equation becomes 30 = 3x + 3(x+2)
Now solve for x:
30 = 3x + 3(x+2)
Simplify:
30 = 3x + 3x +6
30 = 6x + 6
Subtract 6 from each side:
24 = 6x
Divide both sides by 6:
x = 24/6
x = 4
The slower runner ran at 4 kilometers per hour.
The faster runner ran at 4+2 = 6 kilometers per hour.
Answer:Scalene Triangle
Step-by-step explanation:
In a scalene triangle,all sides are not equal