1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aloiza [94]
3 years ago
8

Evaluate the integral ∫2−1|x−1|dx

Mathematics
1 answer:
defon3 years ago
5 0

I think you might be referring to the definite integral,

\displaystyle \int_{-1}^2|x-1|\,\mathrm dx

Recall the definition of absolute value:

|x| = \begin{cases}x&\text{if }x\ge0\\-x&\text{if }x

Then |x-1|=x-1 if x\ge1, and |x-1|=1-x is x. So spliting up the integral at <em>x</em> = 1, we have

\displaystyle \int_{-1}^2|x-1|\,\mathrm dx = \int_{-1}^1(1-x)\,\mathrm dx + \int_1^2(x-1)\,\mathrm dx

The rest is simple:

\displaystyle \int_{-1}^2|x-1|\,\mathrm dx = \left(x-\dfrac{x^2}2\right)\bigg|_{-1}^1 + \left(\dfrac{x^2}2-x\right)\bigg|_1^2 \\\\ = \left(\left(1-\frac12\right)-\left(-1-\frac12\right)\right) + \left(\left(2-2\right)-\left(\frac12-1\right)\right) \\\\ = \boxed{\frac52}

You might be interested in
A cricket bat is bought for $350.
Luda [366]

15%= .15

.15 × $350= 52.50

$350 - 52.50= $297.50

3 0
3 years ago
I need help help me
Nataly [62]

Answer:

associative property

Step-by-step explanation:

3 0
3 years ago
2x + 12 = 1/3 (7/3x+4/3)
gladu [14]

Answer:

Step-by-step explanation:

2x + 12 = 1/3 (7/3x+4/3)

2x+12=\frac{1}{3}*\frac{7x}{3}+\frac{1}{3}*\frac{4}{3}\\\\2x+12=\frac{7x}{9}+\frac{4}{9}\\\\2x-\frac{7x}{9}=\frac{4}{9}-12\\\\\frac{2x*9}{1*9}-\frac{7x}{9}=\frac{4}{9}-\frac{12*9}{1*9}\\\\\frac{18x}{9}-\frac{7x}{9}=\frac{4}{9}-\frac{108}{9}\\\\\frac{18x-7x}{9}=\frac{4-108}{9}\\\\\frac{11x}{9}=\frac{-104}{9}\\\\\\x=\frac{-104*9}{11*9}=\frac{-104}{11}=-9\frac{5}{11}

8 0
3 years ago
PLEASE HELP WILL MARK BRAINLIEST!!!!
podryga [215]
Last Choice is the answer
7 0
2 years ago
A simple random sample of size n is drawn from a population that is normally distributed. The sample​ mean, x overbar​, is found
joja [24]

Answer:

(a) 80% confidence interval for the population mean is [109.24 , 116.76].

(b) 80% confidence interval for the population mean is [109.86 , 116.14].

(c) 98% confidence interval for the population mean is [105.56 , 120.44].

(d) No, we could not have computed the confidence intervals in parts​ (a)-(c) if the population had not been normally​ distributed.

Step-by-step explanation:

We are given that a simple random sample of size n is drawn from a population that is normally distributed.

The sample​ mean is found to be 113​ and the sample standard​ deviation is found to be 10.

(a) The sample size given is n = 13.

Firstly, the pivotal quantity for 80% confidence interval for the population mean is given by;

                               P.Q. =  \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }  ~ t_n_-_1

where, \bar X = sample mean = 113

             s = sample standard​ deviation = 10

             n = sample size = 13

             \mu = population mean

<em>Here for constructing 80% confidence interval we have used One-sample t test statistics as we don't know about population standard deviation.</em>

<u>So, 80% confidence interval for the population mean, </u>\mu<u> is ;</u>

P(-1.356 < t_1_2 < 1.356) = 0.80  {As the critical value of t at 12 degree

                                          of freedom are -1.356 & 1.356 with P = 10%}  

P(-1.356 < \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } } < 1.356) = 0.80

P( -1.356 \times }{\frac{s}{\sqrt{n} } } < {\bar X-\mu} < 1.356 \times }{\frac{s}{\sqrt{n} } } ) = 0.80

P( \bar X-1.356 \times }{\frac{s}{\sqrt{n} } } < \mu < \bar X+1.356 \times }{\frac{s}{\sqrt{n} } } ) = 0.80

<u>80% confidence interval for </u>\mu = [ \bar X-1.356 \times }{\frac{s}{\sqrt{n} } } , \bar X+1.356 \times }{\frac{s}{\sqrt{n} } }]

                                           = [ 113-1.356 \times }{\frac{10}{\sqrt{13} } } , 113+1.356 \times }{\frac{10}{\sqrt{13} } } ]

                                           = [109.24 , 116.76]

Therefore, 80% confidence interval for the population mean is [109.24 , 116.76].

(b) Now, the sample size has been changed to 18, i.e; n = 18.

So, the critical values of t at 17 degree of freedom would now be -1.333 & 1.333 with P = 10%.

<u>80% confidence interval for </u>\mu = [ \bar X-1.333 \times }{\frac{s}{\sqrt{n} } } , \bar X+1.333 \times }{\frac{s}{\sqrt{n} } }]

                                              = [ 113-1.333 \times }{\frac{10}{\sqrt{18} } } , 113+1.333 \times }{\frac{10}{\sqrt{18} } } ]

                                               = [109.86 , 116.14]

Therefore, 80% confidence interval for the population mean is [109.86 , 116.14].

(c) Now, we have to construct 98% confidence interval with sample size, n = 13.

So, the critical values of t at 12 degree of freedom would now be -2.681 & 2.681 with P = 1%.

<u>98% confidence interval for </u>\mu = [ \bar X-2.681 \times }{\frac{s}{\sqrt{n} } } , \bar X+2.681 \times }{\frac{s}{\sqrt{n} } }]

                                              = [ 113-2.681 \times }{\frac{10}{\sqrt{13} } } , 113+2.681 \times }{\frac{10}{\sqrt{13} } } ]

                                               = [105.56 , 120.44]

Therefore, 98% confidence interval for the population mean is [105.56 , 120.44].

(d) No, we could not have computed the confidence intervals in parts​ (a)-(c) if the population had not been normally​ distributed because t test statistics is used only when the data follows normal distribution.

6 0
3 years ago
Other questions:
  • A bacterium in a petri dish multiplies by a factor of 2 every day. On day O, there is 1 bacterium; on day 1, there are 2 bacteri
    12·1 answer
  • 2 =6.28 3 =9.42 5 =15.70 3=1.40 36= X What is the value of x
    15·1 answer
  • Can you help me solve this 2/3 (5 x 4) ÷ 3 + 6/7 =
    5·2 answers
  • The equation for the circle below is x2 + y2 = 25. What is the length of the circle's radius?
    6·2 answers
  • The amount of money Sharita makes varies directly with the number of hours she works. If she earns $41.25 for 5 hours of work, h
    5·1 answer
  • It’s hard may anyone help me answer this question
    12·1 answer
  • At a school carnival, three students spend an average of $10. Six other students spend an average of $4. What is the average amo
    7·1 answer
  • You spin the spinner below once: what is the P(getting a number less than 5)?
    7·2 answers
  • Please help fast!!!
    10·2 answers
  • Find the value of X 9x+7 -3x+20
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!