Answer:
mass of platinum = 2526.12 g
Explanation:
Given data:
Mass of water = 125 g
Initial temperature of water= 100.0°C
Initial temperature of Pt = 20.0°C
Final temperature = 235°C
Specific heat of Pt = 0.13 j/g°C
Specific heat of water = 4.184 j/g°C
Mass of platinum = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
Q(w) = Q(Pt)
m.c. (T2 - T1) = m.c.
(T2 - T1)
125 g × 4.184 j/g°C × (235°C - 100.0°C) = m × 0.13 j/g°C × (235°C - 20°C)
125 g × 4.184 j/g°C × 135°C = m × 0.13 j/g°C × 215°C
70605 j = m×27.95 j/g
m = 70605 j /27.95 j/g
m = 2526.12 g
Answer:
Sand has less specific heat than water.
Explanation:
Specific Heat is amount of heat needed per unit mass, to raise temperature by 1 degree celsius.
More specific heat means more heat energy needed to increase temperature. It implies - more time needed to absorb heat, increase temperature; and also more time needed to lose its heat.
Less specific heat means less heat energy needed to increase temperature. It implies - less time needed to absorb heat, increase temperature; and also less time needed to lose its heat.
Sand has less specific heat than water. So, it needs less heat absorption to increase temperature by per unit (celsius) ; than water. Hence, same level of heat to both sand & water ; increase temperature of sand more than water, & make it more hot.
Answer:
In 1827, Brown observed, using a microscope, that small particles ejected from pollen grains suspended in water executed a kind of continuous and jittery movement, this was named “Brownian motion”. ... This random movement of particles suspended in a fluid is now called after him.
Explanation:
HOPE this helps :)
Chemical properties of arsenic - Health effects of arsenic - Environmental effects of arsenic
Atomic number33Atomic mass74.9216 g.mol -1Electronegativity according to Pauling2.0Density5.7 g.cm-3 at 14°CMelting point814 °C (36 atm
Answer:
(a) 1.92 moles of Bi produced.
(b) 80.6 grams
Explanation:
Balanced equation: Bi2O3(s) + 3C(s) → 2Bi(s) + 3CO(g)
1st find moles of Bi2O3:
Bi2O3 has Mr of 466 and mass of 447 g


2nd find moles of Bi:
Bi2O3 : 2Bi
→ 1 : 2 ------ this is molar ratio.
→ 0.959227 : (0.959227)*2
→ 0.959227 : 1.91845
→ 0.959227 : 1.92
Therefore 1.92 moles of Bi was produced.
3rd Find moles of 3CO:
Bi2O3 : 3CO
1 : 3
0.959227 : (0.959227 )*3
0.959227 : 2.87768
3CO has 2.87768 moles and we know the Mr is 28.


g
Therefore 80.575 grams of CO was produced.