The distance that is traveled by the astronaut given that the motion is free-fall can be calculated through the equation,
d = Vot + 0.5at²
where d is the distance, Vo is the initial velocity, t is the time, and a is the acceleration. Substituting the known,
6 = (0 m/s)(2.7 s) + 0.5(a)(2.7 s)²
Determining the value of a,
a = 1.646 m/s²
ANSWER: 1.646 m/s²
The stiffness constant of the spring is 68,290.3 N/m
<h3>
Stiffness constant of the spring</h3>
Apply the principle of conservation of energy;
U = K.E
¹/₂kx² = ¹/₂mv²
kx² = mv²
k = mv²/x²
where;
- v is speed = 60 km/h = 16.67 m/s
- x is the distance
k = (1300 x 16.67²)/(2.3²)
k = 68,290.3 N/m
Thus, the stiffness constant of the spring is 68,290.3 N/m.
Learn more about stiffness constant here: brainly.com/question/1685393
#SPJ1
The easy answer is lighting.
Answer:
the speed of sound is 331.3 meters per second (1,087 feet per second) in dry air at 0 degrees Celsius