Answer: use socratic you take a picture of the problem and it does it.
When you have lines in graphs for ex
Y=2x+7
2x is the rate of change
7 is the instant amt if the x=0 (or the y-intercept)
X/15=4/16 def of similar triangle by AAA
x = 60/16=5/2
See the picture attached.
We know:
NM // XZ
NY = transversal line
∠YXZ ≡ ∠YNM
1) <span>
We know that ∠XYZ is congruent to ∠NYM by the reflexive property.</span>
The reflexive property states that any shape is congruent to itself.
∠NYM is just a different way to call ∠XYZ using different vertexes, but the sides composing the two angles are the same.
Hence, ∠XYZ ≡ <span>∠NYM</span> by the reflexive property.
2) Δ<span>
XYZ is similar to ΔNYM by the AA (angle-angle) similarity theoremThe AA similarity theorem states that if two triangles have a pair of corresponding angles congruent, then the two triangles are similar.
Consider </span>Δ<span>XYZ and ΔNYM:
</span>∠YXZ ≡ <span>∠YNM
</span>∠XYZ ≡ ∠NYM
Hence, ΔXYZ is similar to ΔNYM by the AA similarity theorem.