The Volume of cylinder represented by the option B.
According to the statement
we have given that the volume formula of cylinder is V= (pi)r^2h, and we have to find that the which expression verify the volume formula for the cylinder given in diagram.
So,
We know that height of the cylinder is given by h = 2x + 7 and
radius r = x - 3.
We know that the formula of volume of cylinder is:
Volume of a cylinder = (pi)r^2h
and Substituting the given values in the above formula
And the volume becomes
Volume = (pi)r^2h
Volume = (pi)( x-3 )^2 (2x+7)
Volume = (pi) ( x^2 + 9 - 6x ) (2x+7)
Volume = (pi) ( 2x^3 + 7x^2 +18x +63 - 42x)
So, The Volume of cylinder represented by the option B.
Learn more about Volume here brainly.com/question/1972490
Disclaimer: This question is incomplete. Please find the full content below.
Question:
The volume of a cylinder is given by the formula V= pi^2h, where r is the radius of the cylinder and h is the height: which expression represents the volume of this cylinder?
a) Volume = (pi) ( 3x^3 + 7x^2 +14x +63 - 42x)
b) Volume = (pi) ( 2x^3 + 7x^2 +18x +63 - 42x)
c) Volume = (pi) ( 7x^3 + 7x^2 +11x +63 - 42x)
d) Volume = (pi) ( 11x^3 + 7x^2 +13x +63 - 42x)
#SPJ4