13.45 will be the answer
since we are finding the hypotenuse, the formula is a^2 + b^2 = c^2
this will then be 10^2 + 9^2 = c^2
181=c^2
c=13.45 :)
14/23. You can’t simplify it anymore. It is also equivalent to about 61% (60.86% to be exact)
Answer:
X=-1,y=-2
Step-by-step explanation:
if y =2x
2x=4x+2
so X=-1 and y=-2
I assume this is the intersection of two lines, i.e. -1/2y is (-1/2)y. Please tell me if it's really -1/(2y).
(-1/2)y=(1/2)x+5
Multiplying both sides by -2
y = - x - 10
The other equation is
y = 2x + 2
We can equate them to find the meet
y = - x - 10 = 2x + 2
-3x = 12
x = -4
y = 2x + 2 = -6
Check: (-1/2)y=3, (1/2)x+5=3, equal, good
2x+2=2(-4)+2=-6=y, good
Answer: x=-4, y=-6
First, you must know these formula d(e^f(x) = f'(x)e^x dx, e^a+b=e^a.e^b, and d(sinx) = cosxdx, secx = 1/ cosx
(secx)dy/dx=e^(y+sinx), implies <span>dy/dx=cosx .e^(y+sinx), and then
</span>dy=cosx .e^(y+sinx).dx, integdy=integ(cosx .e^(y+sinx).dx, equivalent of
integdy=integ(cosx .e^y.e^sinx)dx, integdy=e^y.integ.(cosx e^sinx)dx, but we know that d(e^sinx) =cosx e^sinx dx,
so integ.d(e^sinx) =integ.cosx e^sinx dx,
and e^sinx + C=integ.cosx e^sinxdx
finally, integdy=e^y.integ.(cosx e^sinx)dx=e^2. (e^sinx) +C
the answer is
y = e^2. (e^sinx) +C, you can check this answer to calculate dy/dx