Answer:

Explanation:
According to the free-body diagram of the system, we have:

So, we can solve for T from (1):

Replacing (3) in (2):

The electric force (
) is given by the Coulomb's law. Recall that the charge q is the same in both spheres:

According to pythagoras theorem, the distance of separation (r) of the spheres are given by:

Finally, we replace (5) in (4) and solving for q:

So power is equal to work over time and work is force times distance, you do 5 times 3 and get 15 dividing by 2 gives us 7.5 W answer c
A solid, liquid, or gas or plasma. Which I think it is. Check though.
Answer:
Net force = 800 – 650
= 150 N
150 = (800 ÷ 9.8) a
a = 1470 ÷ 800
= 1.8375 m/s^2, downwards
Answer:
F = 326.7 N
Explanation:
given data
mass m = 200 kg
distance d = 2 m
length L = 12 m
solution
we know force exerted by the weight of the rock that is
W = m × g ..............1
W = 200 × 9.8
W = 1960 N
and
equilibrium the sum of the moment about that is
∑Mf = F(cos∅) L - W (cos∅) d = 0
here ∅ is very small so cos∅ L = L and cos∅ d = D
so F × L - W × d = 0 .................2
put here value
F × 12 - 1960 × 2 = 0
solve it we get
F = 326.7 N